
Response to reviewers for “HMMploidy: inference of ploidy levels from short-read
sequencing data”

Recommender

Dear Recommender,

Many thanks for collecting useful comments on our manuscript. Many thanks for the
patience while waiting for our responses. We addressed all points raised by the
reviewers.

Specifically, in the revised submission, we now:

1) stress the biological importance of our method and provide more details on the
application to aneuploid genomes of C. neoformans;

2) reorganise the text to clarify the connection between parts. In particular, we
moved all mathematical details in the supplementary material to avoid
redundancies. We also modified the main text accordingly to ensure all (but
only the essential) terms were introduced and explained. We believe that the
main text is much easier to follow;

3) fixed any typographical mistakes and simplified the maths;

4) explain all algorithms as requested;

5) discuss any further changes in the modelling as suggested.

Please find point-to-point responses to all comments below.

We hope that the new version is now suitable to be recommended at PCI Math Comp
Biol and published at Peer Community Journal.

Kind Regards,

Samuele Soraggi and Matteo Fumagalli on behalf of all authors.



Reviewer

We further stressed the biological motivation in the introduction and added more
references. In this study, we focus on applications to aneuploid species, not on sex
chromosomes or cancer cells (the latter would require a different modelling).

We also expanded the introduction on NGS data analysis.

The introduction now states that:



As pointed out, HMMploidy was not designed to identify duplicated regions which
result in a local increase in coverage. The reason is that, unlike other methods,
HMMploidy uses the information on genotype likelihoods too, and therefore it is less
sensitive to local variation in sequencing depth.

This behaviour is illustrated when presenting results from the application on C.
neoformans:
“Interestingly, samples CCTP27 and CCTP27 at day 121 (CCTP27-d121) are inferred to
have the same ploidy, even though CCTP27-d121 triplicates its sequencing depth on
chromosome 12 (Fig. 3). “

We argue that the observation of ploidy inference being inconsistent with the local
variation in depth can be used to infer on gene duplications / CNVs, as:
“This finding suggests the presence of a recent copy number variation. In fact, as no
sufficient genetic variation has built up on the recently duplicated triploid
chromosome yet, the data is modeled as a single chromosome by the genotype
likelihoods.”

We acknowledge some confusion on the scope of inferring within-chromosome ploidy
variation. The distribution of inferred ploidy tracts returned by HMMploidy can serve
as (i) confidence on whole-chromosome ploidy assignment and (ii) detection of local



data aberrations. We removed misleading references to HMMploidy used to infer
within-chromosome ploidy variation in the abstract and text.
We also added:
“While ploidy is not expected to vary within each chromosome, the distribution of
local ploidy tracts as inferred by HMMploidy can provide statistical support to
whole-chromosome estimates. Additionally, any detected within-chromosome ploidy
variation can serve as a diagnostic tool to investigate possible mapping or assembly
errors.”

As suggested, we replaced q with epsilon. We also rewrote the equation to make it
clear that the inner summation is over all possible genotypes given a certain ploidy.



We also acknowledge that the previous formulation was confusing (and possibly
formally incorrect), while we assure that the implementation follows the correct
extension of the GATK genotype likelihood model (which is referenced in the main
text). The equation for genotype likelihoods is now written as:

This is a typo, it should be “with”. Thanks for spotting it. This has been fixed.

We believe this comment refers to figure 1 in the revised manuscript. This figure is
simply a cartoon, an illustration of the HMM for two ploidy levels only. There are no
restrictions on which ploidy to start with or end in practice. For this illustration, we
can assume that we have selected only ploidy 2 and 4 as it is easy to visualise the
different contribution of genotype likelihoods and depth.

We state that these parameters refer to the mean and dispersion of the distribution.



Each Poisson-Gamma distribution depends on a ploidy level. This means that all
windows assigned the same ploidy will refer to the same mean and dispersion
parameters. We write the text above after defining the Poisson-Gamma distribution
parameters in the manuscript to avoid confusion.

We moved most of the mathematical details in the supplementary text and refrained
from cross-referencing equations.

There are both typos and an error spotted in the two questions. The correct letter is K
(not in callygraphic font) and the number of ploidy levels is squared. Also the "Big O"
notation for the computational cost was missing, since we mean the algorithm is
O(Yˆ2K). The expression "bounded by'' is incorrect and we rewrite "with
computational complexity O(Yˆ2K) (i.e. linear in the number of loci windows)."

We meant that at 0.5X the best accuracy is achieved with higher sample size. We
rewrote the paragraph to make it clearer.

The grammar was checked and fixed by co-authors who are native English speakers.



This is in fact a binomial distribution. This has been fixed.

This was in fact incorrect and now fixed. Please note that this sentence is not present
in the text anymore as it was redundant once we moved contents into the
supplementary material.

We agreed and we moved most of the mathematical details in the supplementary
material and presented equations only once.

Thanks. This has been fixed.

Fixed.

Thanks. This has been fixed.

The other reviewer also addressed the difficulty in understanding the ECM and Q. In
the text, we now write the following explanations after the 4 steps of the ECM
algorithm:



“The ECM algorithm for a HMM with negative binomial observations thus consists of
two EC-steps and two maximization steps. Specifically for the four steps above:

1. the first EC-step calculates the expected complete-data log-likelihood with the
Markov chain parameters and the dispersion (beta) parameters unknown and to be
estimated at the next M-step (maximization step), conditionally to the mean (alpha)
parameters estimated at the previous iteration of ECM;

2. the first M-step maximizes the intermediate quantity calculated at the first step w.r.t.
the unknown parameters;

3. the second EC-step replicates the first one inverting the roles of known and
unknown parameters;

4. now the second intermediate quantity can be maximized w.r.t. the mean parameters.

The EC-step of the ECM algorithm is very similar to the classical forward-backward
formulation in the E-step of the EM algorithm. The E-step expresses the expected
complete-data log-likelihood with all HMM parameters unknown and to be estimated
at the next M-step. The E-step works for observations distributed with one parameter,
or multiple parameters whose maximization equations can be solved in normal form,
i.e. by isolating the parameter of interest in each equation (e.g. Poisson and Gaussian
distribution). The EC-step is a formulation of the E-step where only a portion of the
HMM parameters can be estimated in one maximization step (the M-step). This is a
characteristic of emission distributions whose parameters can be estimated only in
function of each other in a system of equation (e.g. gamma and negative binomial
distributions). Look at the following calculations and explanations to see concretely
how means and dispersions express each other when writing the functions to
maximize.

The calculation of A, delta at iteration l is solved by using the classical
forward-backward algorithm, therefore we will only briefly mention the necessary
elements of it, while we analyzed more in depth the estimation of means and
dispersions.

The scope of each ECM iteration is to maximize the intermediate quantities to achieve
the highest value of the complete data log-likelihood. In this way, at each iteration,
new parameters can be used to rewrite Q and remaximize it until convergence. It is
worth remembering again that the resulting parameters maximize a quantity different
from the log-likelihood of the observed data - the ECM uses two forms of Q to make
the maximization possible to implement practically, since expressing the
log-likelihood directly is not concretely achievable. “

The logarithm is element-wise, now we specify it in the text after the equation.

Reviewer 1 (Benjamin Peter)



In this paper, Soraggi et al. introduce a new model for inferring the ploidy of an organism
from low-coverage sequence data using genotype likelihoods. This seems like a useful
program; but the current manuscript requires substantial revising and editing to make it
suitable for publication.

Thanks. We addressed all concerns.

Major points:

1. Introduction: I think the authors should define better what they mean with ploidy,
particularly when we talk about ploidy at the sub-chromosome level, and how the authors
expect it to differ from structural variation. I.e. I can think of cases like the
pseudo-autosomal-region in humans and crazy systems like the platypus X-chromosome;
but it would be nice to be explicit about this, I assume it has somehow to do with
homologous recombination?

We now extended what we mean by ploidy and aneuploidy in the introduction, which
now states that:

The focus of this method is on applications to aneuploid species, like the applications
herein presented, and not on sex chromosomes or cancer cell lines. We removed
references to ploidy variation within chromosomes and clarified what we meant by



this. In fact, we use the distribution of within-chromosome ploidy levels as both
confidence and as a diagnostic tool to highlight local regions with aberrant features.
This is now clarified and added as “While ploidy is not expected to vary within each
chromosome, the distribution of local ploidy tracts as inferred by HMMploidy can
provide statistical support to whole-chromosome estimates. Additionally, any
detected within-chromosome ploidy variation can serve as a diagnostic tool to
investigate possible mapping or assembly errors.”

2. Why are coverage-based methods not considered in comparisons? In ancient DNA,
sexing is often done by comparing the ploidy of the X-chromosome. This works well at
coverages < 0.01x, so I don't understand why these approaches wouldn't work on sufficiently
large ploidy-regions. I would imagine at least aneuploidies would be easy to discover with
those approaches as well. This needs to be better justified.

Traditional approaches based on allele frequencies (nQuire) and coverage variation
(ploidyNGS) are indeed considered and compared against HMMploidy. Please note
their description in the introduction.

It is trivial to test between diploid and haploid levels even for very low-coverage data,
as in the case of ancient DNA. It is less trivial to test against multiple ploidy levels, as
the main focus of this method. In fact, from Figure 2, traditional methods have
remarkable less power to detect the correct ploidy

In this snippet from Figure 2:



We report the accuracy (on y-axis) of inferring ploidy 5 at different depths (on x-axis)
with only 1 sample. At low-depth, HHMploidy, has the highest accuracy. These results
are present in the text.

3. Why does the probability on the rhs of equation 2 not depend on i? Also, why does one
not have to correct for the abundance of alleles? I.e. if we have a tetraploid and the
genotype is AAAG, why would the probability of seeing As and Gs be equal? I think Equation
2 as stated is simply wrong, and if not, needs to be much better motivated.

Following additional comments from another reviewer, the equation for genotype
likelihoods has been rewritten for ease of clarity, and it is now:

4. So is the only signal considered in G the heterozygosity? Could that be confounded with
population structure?

HMMploidy jointly uses the information on genotype likelihoods and sequencing
coverage. This can be evinced from Figure 1 and the introduction “HMMploidy
comprises a Hidden Markov Model (HMM) (31) where the emissions are both
sequencing depth levels and observed reads. The latter are translated into genotype
likelihoods (29) and population frequencies to leverage the genotype uncertainty.”
More details are given in the methods and supplementary text.

Population structure will affect the probability of genotypes given allele frequencies.
In these examples, we only assumed HWE but HMMploidy can receive in input
individual inbreeding coefficients to model genotype probabilities in case of deviation
from HWE. In fact, we write “Throughout the analyses carried out in this paper, we
assume Hardy-Weinberg equilibrium (HWE) and thus model the genotype probability
with a binomial distribution (20; 39). Other methods considering departure from HWE
(DHW), can be considered and implemented by ad hoc substitutions of the formula
coded in the software. Such functions can be useful in specific situations, such as
pathology-, admixture- and selection-induced DHW scenarios (8; 21; 22). How ever, we
will leave the treatment of DHW for the inference of ploidy variation in future studies.”



5. I do not think that essentially copying half the paper to the supplement is a good idea. It
just makes the manuscript unnecessarily bloated. Why not reduce the supplement to p 4 and
5 which do the heavy lifting. That little care has been given to this arrangement is also
apparent that the main text refers to superflues equations in the supplement

We moved most of the mathematical details and methods in the supplementary
material. By doing so, we removed all redundancies.

6. Section 2.3: Is reference/sequencing bias an issue here?

We assume that all sequencing data uncertainty is captured in the calculation of
genotype likelihoods. More complex genotype likelihoods, not considered herein but
implementable in the software, allow for the inclusion of mapping errors,
non-independence among reads, and other sources of errors. Additionally, there is no
allele polarisation requirement in HMMploidy.

Minor:

Fig 1: I am a bit confused by panel A. What do the little dots represent? Is the unit a window
or a SNP?

In Fig1A, dots represent units of data within each window.

p3. why would HWE lead to a negative binomial distribution?

This is in fact a binomial distribution. This has been fixed.

p5. (eq 4) would be good to label equation numbers in the supplement separately. Also, why
can't one use the main text equations here?

We changed equation numbering as suggested.

p5. (m-th HMM) should that mean m-th hidden state?) otherwise I don't understand this
section

m-th HMM is the HMM for the m-th genome.

p6. The difference between EM and ECM should be explained. Also, in the
Baum-Welch-algorithm I am familiar with, the Forward-Backward Algorithm is the E-step of
the EM; so what exactly is the EM for each forward-backwards run calculating expectations
over?

The EC-step of the ECM algorithm is very similar to the classical forward-backward
formulation in the E-step of the EM algorithm. The E-step expresses the expected
complete-data log-likelihood with the HMM parameters unknown and to be estimated
at the next EM iteration. The E-step works for emission distributions with one
parameter, or multiple parameters whose maximization equations can be solved in



normal form, i.e. by isolating the parameter of interest in each equation (e.g. Poisson
and Gaussian distribution). The EC-step is a formulation of the E-step where only a
portion of the HMM parameters can be estimated in one maximization step (the
M-step). This is a characteristic of emission distributions whose parameters can be
estimated only in function of each other (e.g. gamma and negative binomial
distributions). In our specific example, at the M-step we first estimate all parameters
except the scales of the negative binomial distributions (on whose values we
condition, from which the C of the EC-step), that are then calculated by conditioning
on all parameters except the means. So the ECM procedure is composed of two
expected conditional log-likelihoods (conditioned on a portion of the parameters) and
two maximization steps.

We write the following text after the ECM steps to clarify the concepts.

“The ECM algorithm for a HMM with negative binomial observations thus consists of
two EC-steps and two maximization steps. Specifically for the four steps above:

1. the first EC-step calculates the expected complete-data log-likelihood with the
Markov chain parameters and the dispersion (beta) parameters unknown and to be
estimated at the next M-step (maximization step), conditionally to the mean (alpha)
parameters estimated at the previous iteration of ECM;

2. the first M-step maximizes the intermediate quantity calculated at the first step w.r.t.
the unknown parameters;

3. the second EC-step replicates the first one inverting the roles of known and
unknown parameters;

4. now the second intermediate quantity can be maximized w.r.t. the mean parameters.

The EC-step of the ECM algorithm is very similar to the classical forward-backward
formulation in the E-step of the EM algorithm. The E-step expresses the expected
complete-data log-likelihood with all HMM parameters unknown and to be estimated
at the next M-step. The E-step works for observations distributed with one parameter,
or multiple parameters whose maximization equations can be solved in normal form,
i.e. by isolating the parameter of interest in each equation (e.g. Poisson and Gaussian
distribution). The EC-step is a formulation of the E-step where only a portion of the
HMM parameters can be estimated in one maximization step (the M-step). This is a
characteristic of emission distributions whose parameters can be estimated only in
function of each other in a system of equation (e.g. gamma and negative binomial
distributions). Look at the following calculations and explanations to see concretely
how means and dispersions express each other when writing the functions to
maximize.

The calculation of A, delta at iteration l is solved by using the classical
forward-backward algorithm, therefore we will only briefly mention the necessary
elements of it, while we analyzed more in depth the estimation of means and
dispersions.



The scope of each ECM iteration is to maximize the intermediate quantities to achieve
the highest value of the complete data log-likelihood. In this way, at each iteration,
new parameters can be used to rewrite Q and remaximize it until convergence. It is
worth remembering again that the resulting parameters maximize a quantity different
from the log-likelihood of the observed data - the ECM uses two forms of Q to make
the maximization possible to implement practically, since expressing the
log-likelihood directly is not concretely achievable. “

------------

p6. why is overfitting sets of ploidy levels a concern? How is the number of ploidy levels
defined/constrained in the first place?

The distributions modelling the number of observed reads might overlap erroneously,
recognizing two or more distinct hidden states matching similar mean and dispersion
in the emission distributions. Moreover, noisy data and sequencing errors might
create multiple hidden states having quite different emission distributions, when the
underlying ploidy would be the same. To avoid this effect, we use the genotype
likelihoods to penalize the existence of ploidies that do not fit the data according to
genotype likelihoods. The BIC score of the HECM is used to remove the hidden states
"in excess" from the model. The initial number of ploidy levels for the model is
constrained by allowing the user to set a maximum value or a set of desired ploidy
levels to consider in the algorithm.

Typos:

p2 incorporates

p3 (lower case) letters

across reads

In general, the English is quite poor and requires further editing. Also line numbers would
greatly help pointing out typos and issues more specifically. This is compounded by the
issue that the paper is at times jargon heavy (e.g. Tower property, Markov matrix) and
worse, the jargon is not explained and used inconsistently (Markov matrix vs Transition
matrix).

We fixed typos and co-authors who were native English speakers checked and fixed
the grammar. We fixed the issue with jargon as suggested.



Reviewer 2 (Nicolas Galtier)

This manuscript introduces a method for inferring ploidy and its variation across genomes
and loci based on next-generation sequencing data. The main novelty is the introduction of a
hidden Markov Model (HMM) in which ploidy is assumed to vary across genomic windows.
Ploidy is an important aspect of genome structure, and underlies key technical challenges of
genome assembly and analysis, so this manuscript, in my opinion, addresses an important
problem. I like much the idea of explicitly modelling ploidy variation and the resulting
predictions on patterns of sequence coverage and base counts. I think that the HMMploidy
approach has a great potential of significantly advancing the field. That said, I have a
number of concerns regarding the manuscript, both content and form, which I detail below.
Briefly, I do not think the approach is particularly well motivated or illustrated, I have
technical issued with the maths and the way the method is presented, and a suggestion of
improvement regarding sequence coverage modeling.

Thanks for the comments. We improved both the motivation and presentation of our
method, as detailed in the responses below.

A. Awkward/insufficient justification of the method:

It is not totally intuitive why HMM would be appropriate to model ploidy, since ploidy is
typically thought of as a constant, for a given species. In reality, the realized ploidy can vary
across chromosomes or chromosomal regions and/or between individuals, making the HMM
approach a promising one. The introduction very briefly mentions aneuploidy in cancer cells,
and polyploidization in plants, as two possible instances of variable ploidy. The manuscript,
however, does not develop on these examples, and rather presents (i) an analysis of data
simulated in the absence of any variation in ploidy, and (ii) an analysis of a data set in
Cryptococcus neoformans, introduced with very limited biological context. I did not find that
the HMMploidy method performs particularly well in these two analyses. It was not obviously
better than competing methods in the simulation benchmark, and failed to detect a
conspicuous instance of triploidy in the real data analysis.

The focus of this method is on applications to aneuploid species, and not on sex
chromosomes or cancer cell lines. Our main application is on Cryptococcus
neoformans. We now provide more biological context in the introduction:

“Cryptococcus neoformans is a fungal pathogen capable of causing meningitis in
immunocompromised individuals, particularly HIV/AIDS patients. Ploidy variation, via
aneuploidy and polyploidy, is an adaptive mechanism in C. neoformans (and other
pathogenic fungi, such as Candida albicans and Candida glabrata) capable of
generating variation within the host in response to a harsh environment and drug
pressure (Morrow and Fraser, 2013). Aneuploidy-driven heteroresistance to the
frontline antifungal drug fluconazole has been described (Stone et al. 2019), resulting
in treatment failure in patients. Within fluconazole resistant colonies, aneuploidy was
common, particularly disomy of chromosome 1 which harbours the gene encoding
the main drug target of fluconazole, ERG11 (Stone et al. 2019, Sionov et al. 2010).”



We removed references to ploidy variation within chromosomes and clarified what we
meant by this. In fact, we now add in the discussion: “While ploidy is not expected to
vary within each chromosome, the distribution of local ploidy tracts as inferred by
HMMploidy can provide statistical support to whole-chromosome estimates.
Additionally, any detected within-chromosome ploidy variation can serve as a
diagnostic tool to investigate possible mapping or assembly errors.”

Please also note that we extended the introduction with more information on ploidy,
ploidy variation and next-generation sequencing data.

From Figure 2, HMMploidy has a remarkably better performance at inferring ploidy
with increasing sample size. This snippet

Shows the accuracy (on y-axis from 0 to 1) to infer triploids with 10 and 20 samples
(left and right panels), with depth on x-axis (0.5, 1, 2, 5, 10, 20). The labels of different
methods are:

We also acknowledge that HMMploidy is not always the most performant method at
lower sample sizes. However, we believe our results on the performance of various
methods are useful for experimental design and provide general knowledge of the
power to infer ploidy at various conditions. Importantly, please also note that “While
nQuire and ploidyNGS sweep the whole simulated genomes, HMMploidy analyses
windows of 250bp, so the detection rate is calculated as the windows' average,
making the comparison deliberately more unfair to our method.”

Regarding the point that HMMploidy “failed to detect a conspicuous instance of
triploidy in the real data analysis”, we actually argue the opposite. In fact, HMMploidy
is not drastically sensitive to local changes in depth (unlike traditional methods) and
was able to infer the correct ploidy in face of aberration increase in ploidy (possibly



due to gene duplications). In fact, where we write “Interestingly, samples CCTP27 and
CCTP27 at day 121 (CCTP27-d121) are inferred to have the same ploidy, even though
CCTP27-d121 triplicates its sequencing depth on chromosome 12 (Fig. 3). “. We argue
that the observation that ploidy inference is inconsistent with the local variation in
depth can be used to infer on gene duplications / CNVs. Thus, we also write “This
finding suggests the presence of a recent copy number variation. In fact, as no
sufficient genetic variation has built up on the recently duplicated triploid
chromosome yet, the data is modeled as a single chromosome by the genotype
likelihoods.” The ability of HMMploidy to prevent being biased by local changes in
depth is given by the integrated use of genotype likelihoods (a feature that no other
methods has).

There are a number of reasons why ploidy is expected to vary among/across assembled
genomes that are not mentioned or considered in the manuscript. The realized ploidy can be
locally increased due to large-scale duplications, when several distinct regions of a genome
are so similar that they are assembled as a single piece. Counting gene copy number is
indeed a difficult problem (eg see papers by Schrider and Hahn). Another typical artefact
with genome assembly is allele splitting, when heterozygosity is so high that assembling
algorithms separate homologus alleles as if they were distinct loci (eg have a look at papers
on the Ciona savignyi and Adineta vaga genomes, or the recent liteature on haplotig
detection and cleaning). The HMMploidy approach seems to be a promising way to identify,
annotate and possibly filter out such anomalous genomic regions. Another example of
varying ploidy that comes to my mind are sex chromosomes, which are haploid in the
heterogametic sex (male in XY systems, female in ZW systems) and diploid in the
homogametic sex (see for instance papers by Muyle, Kafer and Marais on how to annotate
sex-chromosome-associated contigs). Please note that in many systems (eg mammals) the
Y/W chromosome is actually a mosaic of ploidy, with so-called pseudo-autosomal regions
being diploid while the sex-specific region is haploid. Each of the topics I'm mentioning in this
paragraph is the subject of a voluminous literature.

I would suggest (i) strenghtening the introduction by discussing in more detail why
among-loci variation in ploidy is actually relevant, thus justifying the HMM approach, and (ii)
identifying a couple of real data sets with clear expectations regarding ploidy variation, and
demonstrate the applicability and added value of the newly introduced method.

The focus of this method is on applications to aneuploid species, like the applications
herein presented, and not on sex chromosomes or cancer cell lines. We removed
references to ploidy variation within chromosomes and clarified what we meant by
this. In fact, we use the distribution of within-chromosome ploidy levels as both
confidence and as a diagnostic tool to highlight local regions with aberrant features.
This is now clarified and added as “While ploidy is not expected to vary within each
chromosome, the distribution of local ploidy tracts as inferred by HMMploidy can
provide statistical support to whole-chromosome estimates. Additionally, any
detected within-chromosome ploidy variation can serve as a diagnostic tool to
investigate possible mapping or assembly errors.”



B. Awkward/inaccurate presentation of the method:

I have several concerns with the way the method is presented, which I think mostly result
from insufficient clarity. At any rate at the moment I can't say I totally understand what the
method exactly does, and the manuscript apparently contains incorrect equations.

We fixed the equation on genotype likelihoods and moved most of the mathematical
details in the supplementary material.

- 2.1 first sentence: "N polymorphic sites"; how do we know a site is polymorphic or not prior
to the analysis? Should one perform SNP calling beforehand? Maybe remove
"polymorphic"?

We removed “polymorphic” as suggested.

- 2.1: a genotype is described as the number of "alternate (or derived) alleles", suggesting
that SNPs are assumed to be polarized. I do not think that the method presented here
requires SNP polarization (which is good), so I would suggest clarifying.

The method does not assume SNP polarisation. We added “Any of the two alleles can
be considered to define G_{m,n}.”

- 2.1: "We assume Hardy-Weinberg equilibrium (HWE) and thus model the genotype
probability with a negative binomial distribution" -> I would rather think a binomial
distribution?

This was a typo and it has been fixed as suggested.

- 2.2: Equation 2 appears awkward. The summation variable i does not appear in the term
right to the Sigma symbol, which is suggestive of a problem. Also a genotype G_mn was
defined above as an integer taking value in {0, ..., Y_mn}, but here appears the idea that
O_mnr (some observed nucleotide) can be "in G_mn" (second part of equation 2), which is
inconsistent.

I guess one could re-define a genotype as a vector of nucleotide instead of an integer, then
replace in equation 2

p(O_mnr|G_mn,Q_mnr,Y_mn)

with

p(O_mnr|G_mni,Q_mnr,Y_mn)

and replace in second line of equation 2

"if O_mnr in G_mn"

with



"if O_mnr = G_mni"

Alternatively one could keep the text definition of genotype, call A_n and a_n the two alleles
at locus n (say), and replace in equation 2:

sum_i p(Omnr|G_mn,Q_mnr,Y_mn)/Y_mn

with

((1-G_mn) p(O_mnr|A_n,Q_mnr,Y_mn) + G_mn p(O_mnr|a_n,Q_mnr,Y_mn))/Y_mn

and adjust second line of equation 2.

The above two options, which I think are equivalent (but different from the text), are what
makes sense to me. In the rest of this review I'm assuming that the calculation that was
actually made corresponds to the above modified equations.

We rewrote the equation of genotype likelihoods as it was confusing (and possibly
formally incorrect). It now reads:

Please note that the implementation follows the correct equation, as the extension of
GATK genotype likelihood model to polyploids.

- 2.3: equation 3 is a rather complex way of saying that the estimated alternate allele
frequency is the observed alternate allele frequency across all reads from the pooled
genome sample. Indeed Fhat_mn in equation 3 can be written as f_mn/C_mn, where f_mn is
the observed number of alternate alleles in genome m, so C_mn cancels out and we get
Fhat_n=sum(f_mn)/C_n.

We changed the equation as suggested.

[now switching to Supplementary Material]

- 6.5: I am not sure what alpha and beta are. I guess these correspond to the shape and
scale parameter of the Poisson-Gamma distribution of mean coverage across windows - this
should be specified. Secondly, I do not understand why these parameters appear with a _k
index, suggesting there is one alpha and one beta per window. The text and figure S1
instead suggest that there is one value of coverage per window, C_m(k), drawn from a



unique Poisson-Gamma distribution, the parameters of which should be shared across
windows?

There is an alpha and a beta for each ploidy level/hidden state of the HMM. The index
k refers to the ploidy level of the k-th window, i.e. Y_(m)^k, so that for the same ploidy
in different windows there will be the same pair of parameters describing the
observed data.

This same issue was raised by the other reviewer, denoting that the definition was not
entirely clear. We try to help the understanding of the text by stating the following
after the definition of parameters:

Note that the Poisson-Gamma distributions depend each on a ploidy level. This
means that all windows assigned the same ploidy will refer to the same mean and
dispersion parameters.

C. Modeling scheme:

The way sequencing coverage is modeled lacks clarity and justification. Irrespective of
ploidy, there might be differences in coverage among loci (e.g. GC-rich vs GC-poor regions)
and among genomes (due to experimental setting or the experimental noise). It would
appear natural to me to model the among-loci variation in coverage as suggested in the ms,
to also model among-genomes variation in coverage (i.e., introduce genome specific
coverage parameters), and to define C_m(k) as the product of these two terms - thus
assuming that the locus-effect and the genome-effect are independent. If one thinks this is
too strong an assumption, maybe some (de)correlation parameter could be introduced. My
understanding of the current method is that the across_loci distribution of coverage is
assumed to be independent across genomes, i.e., the fact that one locus is highly covered in
one genome says nothing about coverage at the same locus in another genome. This
sounds like an highly, maybe overly, versatile model, which I think might induce some loss of
signal. For instance, the analysis of chromosome 12 in the Cryptococcus CCTP27-d121
sample did not detect any change in ploidy even though coverage is consistently tripled
across a large portion of the chromosome (fig 2). I suggest that if coverage was modeled in
a more constrained way - i.e. as the product of a genome-specific and a locus-specific term -
this abnormality could be interpreted by the method as a triplication. A clarification of how
coverage is modeled across loci and genomes, a discussion of this question, and an attempt
to adopt a less versatile scheme, would appear required.

This is an interesting extension of modelling coverage across the genome which will
have important applications, for instance, for the analysis of cancer genomes. We
mention in the introduction that some methods use GC-content information. We state
“Available computational methods to infer ploidy levels from genomic data are [...]
based [...] on using inferred genotypes and information on GC content - although this
is an approach specific for detecting aberrations in cancer genomes (e.g. AbsCN-seq
(4), sequenza (13))”. Adding dependency to GC-content for the depth-associated
component of HMMploidy is beyond the scope of this paper, but an interesting
extension to follow up in future studies.



Additionally, We wish to reiterate that HMMploidy successfully prevented a wrong
inference of Cryptococcus CCTP27-d121 being triploid despite an aberrant increase in
coverage, as explained earlier. This is thanks to the joint use of depth and genotype
likelihoods.

D. Minor

- section 3: "averaged by the polyploid genome size" -> "divided by genome size" ?

We now write “The sequencing depth is defined as the average number of sequenced
bases at one site for each chromosomal copy (i.e. divided by the ploidy level).“

- Simulations: section 3 says that ploidy 1 to 20 have been simulated, but the result section
and figure 2 only consider ploidy 1 to 5.

Simulations were performed with this combination of parameters: ploidy (from 1 to 5,
constant along each genome), sample size (1, 2, 5, 10, 20), and sequencing depth
(0.5X, 1X, 2X, 5X, 10X, 20X).

- Discussion: "On the former point, rescaling sequencing depth across genomes is not
possible since HMMploidy models a distribution of read counts." -> I do not understand this
sentence.

We agree that the sentence is not clear enough.

We want to underline that one could limit itself to define only one HMM for all
genomes. To do this, sequencing depth could be for example standardized in each
genome. Firstly, this would make the estimation of the distributions of standardized
counts very difficult, especially in samples with a lot of noise, errors, and/or
low-depth sequencing. Secondly, two genomes could easily have two different ploidy
levels matching the same distribution parameters. For example a diploid-tetraploid
sample where the two ploidy levels have observations’ mean parameters -1 and 1
could match haploid-diploid levels in another genome having the same mean
parameters for the ploidy-related observations. The only case in which one can use
the same HMM for all genomes is when they have all the same ploidy levels, but we
did not implement this function because it is a very unusual and unlikely practical
case.

We clarify this by substituting the sentence with:

On the former point, assume one could limit itself to define only one HMM for all
genomes. To do this, sequencing depth could be for example standardized in each
genome. Firstly, this would make the estimation of the distributions of standardized
counts very difficult, especially in samples with a lot of noise, errors, and/or
low-depth sequencing. Secondly, two genomes could easily have two different ploidy
levels matching the same distribution parameters. For example a diploid-tetraploid
sample where the two ploidy levels have observations’ mean parameters -1 and 1



could match haploid-diploid levels in another genome having the same mean
parameters for the ploidy-related observations. The only case in which one can use
the same HMM for all genomes is when they have all the same ploidy levels, but we
did not implement this function because it is a very unusual and unlikely practical
case.


