
Alignment-free detection and seed-based
identification of multi-loci V(D)J
recombinations in Vidjil-algo

Cyprien Borée, Mathieu Giraud, Mikaël Salson
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL – Centre de Recherche en Informatique Signal et Automa-
tique de Lille – F-59000 Lille, France
Correspondence: contact@vidjil.org

Abstract 1

2

The diversity of the immune repertoire is grounded on V(D)J recombinations in several loci. Many algorithms
and software detect and designate these recombinations in high-throughput sequencing data. To improve
their efficiency, we propose amulti-loci seed identification through anAho-Corasick like automaton aswell as
a seed-based gene filtration. These algorithms were implemented into Vidjil-algo, used routinely by several
labs for the analysis of hematologic malignancies.

3

4

5

6

7

We benchmark the results of Vidjil-algo and of MiXCR on five datasets, evaluating the specificity and sensitiv-
ity of the detection, as well as the adequation of the designation to manually curated sequences. Compared
to the previous algorithms, the new algorithms implemented in Vidjil-algo bring speedups between 3× and
30×, with a smaller memory footprint and without quality loss in results. They enable to precisely annotate
in a few minutes millions of sequences coming from V(D)J recombinations, including incomplete V(D)J-like
recombinations, improving our knowledge on immune repertoires.
Availability: https://www.vidjil.org/data#2024-pcicompbio
Preprint. July 3, 2024

8

9

10

11

12

13

14

15

16

17

18

Keywords: Spaced seeds; Aho-Corasick automaton; Alignment-free algorithms; Immune repertoire; V(D)J
recombinations; Adaptive Immune Receptor Repertoire (AIRR); Repertoire Sequencing (RepSeq)

19

20

1

mailto:contact@vidjil.org
https://www.vidjil.org/data#2024-pcicompbio

1 Introduction 21

V(D)J recombinations are genetic events occurring in immature immunologic cells, the lymphoblasts. These 22

recombinations are an important factor of the diversity of the receptors on B- and T-cells (Tonegawa, 1983). 23

A V(D)J recombination is the result of a random process combining a V gene, possibly a D gene, and a J 24

gene on the genome, building either VDJ or a VJ recombination. The recombination involves enzymes called 25

recombination-activating genes (RAGs). At the junction of these V, D, and J gene segments, nucleotides can be 26

removed and other random ones can be added (see Figure 1), improving again the diversity. Depending on 27

the cell type, these recombinations occur at several loci. Human B-cell receptors have an heavy chain (IGH) 28

and a light chain λ or κ (denoted here IGL and IGK), whereas T-cell receptors either have γ and δ chains (TRG 29

and TRD) or α and β chains (TRA and TRB). 30

T- and B-cell receptors are crucial for recognizing antigens, which is a key part of the adaptative immune 31

response. Identifying andpossibly quantifying V(D)J recombinations helps thus describe the immune response 32

more efficiently. Moreover, a V(D)J recombination can be seen as an identifier – that may be unique – of a 33

clonal population, or shortly clone, that is a cell population coming from a same lymphoblast. This identifying 34

sequence is called a clonotype, but there may be several clonotypes of the same clone (at different loci or 35

alleles) or several different clones with the same clonotype (that may differ elsewhere). In hemato-oncology, 36

V(D)J recombinations are thus used to identify and track clonotypes along time in blood cancers (Cavé et al., 37

1998). Library preparation for these studies was recently standardized by the EuroClonality-NGS working 38

group (Brüggemann et al., 2019; Langlois de Septenville et al., 2022; Villarese et al., 2022). 39

On the software side, since the 1980s, after the pioneering work by the Universität zur Köln with DNAPLOT, 40

many tools for the in-depth analysis of V(D)J recombinations were developed by IMGT (Giudicelli, Chaume, et 41

al., 1998; Lefranc, 2011). In the 2010s, newmethods and softwarewere proposed to analyze these V(D)J recom- 42

binations in high-throughput sequencing datawithmillions of sequences, such as (Arnaout et al., 2011), IgBlast 43

(Ye et al., 2013), Decombinator (Thomas et al., 2013), miTCR (Bolotin, Shugay, et al., 2013), TCRKlass (Yang et al., 44

2014), Vidjil (Giraud et al., 2014), MiXCR (Bolotin, Poslavsky, et al., 2015), IMSEQ (Kuchenbecker et al., 2015), 45

Partis (Ralph and Iv, 2016), IgReC (Shlemov et al., 2017), and IGoR (Marcou et al., 2018). Afzal et al. (2019) did a 46

comparison of several of those software tools. These Adaptive Immune Receptor Repertoire (AIRR-Seq) meth- 47

ods and software, also called Repertoire Sequencing (RepSeq) (Benichou et al., 2012), developed and invented 48

text algorithmics methods adapted to the specificity of V(D)J recombinations. 49

We call here: 50

• detection, the process of identifying the presence of a V(D)J recombination within a given DNA sequence 51

and determining the related chain (the locus); 52

• designation, the process of determining the specific germline V, (D), and J genes that have undergone 53

recombination, as well as identifying nucleotide deletions, or insertions that may have occurred at the 54

junction between those genes, and possibly detecting the mutations in the whole sequence; 55

• clusterization, the process of gathering equal or similar recombinations, according to some criteria, into 56

clonotypes. 57

Most V(D)J analysis software detect and designate V(D)J recombinations at the same time, for each of the in- 58

put sequences, and some of them cluster sequences thereafter. Vidjil-algo rather cluster sequences before the 59

V

AATA
D

GCT
J

Figure 1. A VDJ recombination. After removal of a few nucleotides at the junction of V, D, and J, genes, AATA
was inserted between gene segments V and D and GCT was inserted between gene segments D and J.

2

locus regular recombinations incomplete/irregular recombinations
14q1.12 TRA Va-Ja
7q34 TRB Vb-(Db)-Jb TRB+ Db-Jb
14q11.2 TRD Vd-(Dd)-Jd TRD+ Vd-Dd3, Dd2-(Dd)-Jd, Dd2-Dd3

TRA+D Vd-(Dd)-Ja, Dd-Ja
7p14 TRG Vg-Jg
14q32.33 IGH Vh-(Dh)-Jh IGH+ Dh-Jh
22q11.2 IGL Vl-Jl
2p11.2 IGK Vk-Jk IGK+ Vk-KDE, INTRON-KDE

Table 1. Regular and incomplete/irregular human V(D)J and V(D)J-like recombinations analyzed by
vidjil-algo. There are seven loci with at least 16 recombination possibilities (called recombination systems).
For example, on the 14q11.2 TRD locus, apart from the regular recombination, there are at least three known
systems of irregular recombinations (TRD+) as well as two systems involving the very close TRA locus (TRA+D).
These recombination systems are formally described in the JSON file homo-sapiens.g, and the correspond-
ing 5’ and 3’ genes (V and J genes for the regular recombinations) are indexed in a Aho-Corasick automaton.
Note also that, for short genes (J genes, and D genes involved in incomplete recombination systems), both the
genes and 60bp of their downstream/upstream region are indexed (Duez et al., 2016).

full designation (Giraud et al., 2014). Indeed, for many applications, the designation for each sequence is not 60

useful and more efficient alignment-free approaches, including k-mers indexing, can cluster the sequences 61

after detection. 62

A mature B- or T- cell needs only two V(D)J recombinations, on only one allele. However, V(D)J recombina- 63

tionsmayoccur at sevendiffent loci (IGH, IGL, IGK, TRG, TRD, TRA, TRB, see Table 1). Onemay find unproductive 64

recombinations on the other allele, or even in the TR loci in B-cells. Some of these non-productive recombina- 65

tionsmay be incomplete or irregular, such asD-J recombinations on the IGH locus or V-KDE on the IGK, the RAGs 66

enzymes handling the KDE sequence as a J gene. These bi-allelic, incomplete, or irregular recombination are 67

even more frequent in pathological samples, and are also tracked in hemato-oncology studies (Brüggemann 68

et al., 2019). 69

Altogether, one frequently studies datasets with V(D)J or V(D)J-like recombinations on different loci. Table 1 70

lists ℓ = 16 different known recombination systems. Some AIRR-Seq/RepSeq software allow to analyze several 71

systems. The previous Vidjil-algo algorithm was able to detect recombinations in time O(ℓn), where n is the 72

length of the input sequence and ℓ the number of recombination systems. 73

We propose here a new algorithm able to process at once all recombinations systems, detect any V(D)J or 74

V(D)J-like recombinations in timeO(ℓ′n), where ℓ′ ≤ ℓ is an average number of gene labels per position, with 75

usually ℓ′ ≪ ℓ (Section 2). We also propose a filtering algorithm to improve the V(D)J designation, in time 76

O(M ′n) instead of the previousO(Mn), whereM is the total size of genes and usuallyM ′ ≪M (Section 3). 77

These algorithms were implemented in vidjil-algo: We finally report benchmarks, both on simulated and real 78

datasets, on the quality and the speed of detection and designation (Section 4). The new algorithms bring 79

speedups between 3× and 30×, with a smaller memory footprint and without quality loss in results. 80

2 Linear detection of multi-loci V(D)J recombinations 81

An efficient strategy to detect V(D)J recombinations in a sequence is to look for a position splitting the se- 82

quence into two zones the 5’ zone with significant hits from a given type (e.g. V genes) followed by a 3’ zone, 83

with significant hits from another type (e.g. J genes). In the original Vidjil-algo version, this strategy was used 84

successively for all recombination systems listed in Table 1 (Giraud et al., 2014). 85

We use here an Aho-Corasick automaton, well-suited to look for a set of patterns inside a sequence. This 86

3

https://gitlab.inria.fr/vidjil/vidjil/-/blob/49bfdd3cd487ec932870a5795b26efb4c022ae5f/germline/homo-sapiens.g

search has a time complexity linear in the sequence size and independent from the size of the set of pat- 87

terns (Aho and Corasick, 1975). Note that Decombinator (Thomas et al., 2013) also relies on an Aho-Corasick 88

automaton by indexing some tags from the V, D and J genes in order to designate the sequences more effi- 89

ciently. In our case, the automaton will be used for the detection of recombinations and it does not index V, 90

D, and J genes, but rather spaced seeds extracted from these genes. Using the automaton enables to store in 91

a single pass several types of seeds and to detect, in linear time, the recombination system (including incom- 92

plete/irregular recombinations), together with an estimation of the boundaries of the 5’ and 3’ zones. 93

Seeds and seed occurrences. Aword of size n is a sequence of symbols u1u2 . . . un, and we denote a factor 94

of a word by u[i, j] = uiui+1 . . . uj . We consider symbols denoting nucleotides, Σ = {A,C,G, T}, as well as 95

match (#) and don’t-care (-) symbols. A gene g ∈ Σ∗ is a sequence of nucleotides, and G is the set of genes. 96

Each gene g ∈ G has a label T (g) such as V −
H or J+

B . The label encodes both the V/J type, the locus, and the 97

strand information. 98

A spaced seed u (also called spaced k-mer) is a sequence of # and - symbols. We denote by seed(w, u) = v 99

the projection of the seed u on the word w of the same length, that is, for 1 ≤ i ≤ |w| = |u|, vi = wi if ui = # 100

and otherwise vi = -. For example, seed(ATCG, ##-#) = AT-G. Theweight of a seed is its number of # symbols. 101

For example, weight(##-#) = 3. We use there the seeds 12s = ######-###### and 10s = #####-#####, 102

with weight(12s) = 12 and weight(10s) = 10. Spaced seeds are more effective than consecutive seeds of 103

the same weight to "seed" approximate alignments (Brown, 2008). For example, on a sequence of at least 104

40 nucleotides, the spaced seed 12s can match any alignment with up to 12%mismatches, compared to 4% 105

mismatches for the contiguous seed of size 12. Optimization of such seeds is discussed at the end of the 106

paper. 107

Indexation. We extract the seed occurrences at each position of a V, (D), or J genes according to a given 108

seed. Let Fact(s) be the set of all the factors of s. We call P (g, u) the set of words that are factor of a 109

gene g relatively to the seed u: P (g, u) = {w ∈ Σ∗ | ∃i, seed(gi...i+|u|−1, u) = seed(w, u)}. As an example, 110

P (GCCAT, ####) = {GCCA, CCAT}, whereas P (ACAC, #-#) = {AAA, ACA, AGA, ATA, CAC, CCC, CGC, CTC}, 111

There are at mostO(|g|4z) of these words, where z = |w|−weight(w) is the number of don’t-care symbols 112

inw. Typical seeds have z = 1 or 2. All words fromP (g, u), for all genes g ∈ G, are indexed by an Aho-Corasick 113

automaton (see Figure 2). Note that, in practice, failure transitions are removed by replacing them with four 114

transitions, corresponding to the four nucleotides. More specifically a failure transition to a state representing 115

sequence s will be replaced by a transition to state s · c when it exists, with c one of each nucleotide. When 116

the state s · c does not exist, we will recursively follow the failure transition of state s until a state can be 117

reached through a transition c. If no such state exists, the failure transition will be replaced by a transition by 118

c to the initial state. Thus the (nondeterministic) Aho-Corasick automaton is transformed in linear time into a 119

(deterministic) factor automaton while keeping the same number of states. 120

The accepting states, that is here the end of seed occurrences, are labeled with the list of the labels T (g) 121

of the genes g occurring at that point – there can be one or several such genes. Note that, contrarily to a 122

lookup table index, the Aho-Corasick automaton may store words with different lengths, representing differ- 123

ent spaced seeds (possibly with different weights) according to the recombination system, the gene V/J type, 124

or even an individual gene. 125

Querying. Querying a sequence s simply means traversing it while following the transitions in the automa- 126

ton, in O(|s|) time. All accepting states encountered indicate the end of at least one spaced seed that occurs 127

in the sequence. The output is a label sequence, that is a sequence of list of gene labels such as Aff (s,G) = 128

- J+G - V+H V+H V+H J+H - - V+H V+H - V−B - - J+H J+H J+H -. As there may be several gene labels per state, the label 129

sequence can have a maximum size ofO(nL), where L ≤ ℓ is the maximum number of gene labels per state. 130

L is considered constant (on the usual germlines, L ≤ 6). Calling ℓ′ the average number of gene labels per 131

4

V+A
A

V+AC
V+AG

V+A
TA

V+C
A J+, V+CA

V+
CC

V+CG

V+C
T

C

Figure 2. Aho-Corasick automaton for P (ACAC, #-#) ∪ P (CCAC, ####), that is for the projected seeds A-A,
C-C, and CCAC. The gray arrows correspond to the failure transitions in the Aho-Corasick automaton. They
can be seen as ε-transitions and are removed in a pre-processing step, without changing the number of states.
The accepting states have been labeled with V+ for the first seed and with J+ for the second one. Thus the
state CCAC is labeled with J+ but it is also labeled with V+ as its failure function points to an accepting state
labeled with V+.

Input: a reduced label sequence a = a1a2 . . . an

δ ← 0; δmax ← 0

i ← 0; j ← 0

For each q from 1 to n

Invariant: δ = |a[1, q − 1]|V − |a[1, q − 1]|J
if at = V, then δ ← δ + 1

if at = J, then δ ← δ − 1

if δ > δmax, then δmax ← δ and i ← q

if δ = δmax, then j ← q

End for
Return i and j

δ

i j

1 11 12 15 16 19

5’ zone 3’ zone

- - - V V V J - - V V - - - - J J J -

Figure 3. (Left)O(n) time search of the (i, j) plateau reached around the V-J recombination zone. The actual
implementation (affectanalyser.h) uses bitsets to check the values of at, and also computes, in the same
linear time, the values |a[1, i]|V, |a[1, i]|J, |a[j, n]|V et |a[j, n]|J for filters and the statistical evaluation. (Right)
On this reduced label sequence, the maximal values of δ are δ(11) = . . . = δ(15) = 4. Thus here i = 11 and
j = 15.

5

http://gitlab.vidjil.org/-/blob/d158f16771b10626911c6ecac1444ac1c6542728/algo/core/affectanalyser.h#L205

a) n

o

M

b) o

m

c) n

d

δ d δV

J

V

J

V

J

D M ′read

Figure 4. V(D)J designation by dynamic programming, declared in segment.h. See Jones and Pevzner (2004,
chapter 6) for an introduction ondynamic programmingmethods to compare sequences. Grayed out triangles
show parts excluded from the computation. a) Search of the best alignments between the read with a V gene
and a J gene, inO(Mn) time, whereM is the total size of indexed genes and n the size of the read. Candidate
V and J segments are independently predicted. b) When the best alignements make the candidate V and J
segments overlap on o ≤ n positions, the best split point is found by another search in time O(mo), where
m ≪ M is the total size of considered V and J genes. c) In the case of a VDJ-like recombination, the central
segment is predicted by a local aligment in timeO(M ′(d+2δ)), whereM ′ is the total size of indexed D genes
and d+2δ ≤ n is the size of the zone where the D segment is searched. Overlaps between V and D or between
D and J candidate segmentes are handled as previouly. The algorithm finally runs in time O((M +M ′)n).

state, the label sequence has an average size of O(nℓ′). On the usual germlines, ℓ′ = 1.14 gene labels per 132

accepting state. 133

One can then focus on a reduced label sequenceAff (s,G)±LOC focusing on V and Jof one locus LOCandone 134

strand. For example, focusing on the labelsV +
H and J+

H , we consider a reduced label sequenceAff (s,G)+IGH = 135

- - - V V V J - - V V - - - - J J J -. 136

Given a gene label t, we denote by |s|t = |{P (g, u)∩Fact(s) such that T (g) = t}|, the number of t in the 137

label sequence Aff (s,G), with the seed u being used for t. On the same example, |s|V+H = 5. 138

Locus estimation. The label sequence is analyzed according to the two most probable gene labels1 (see 139

p-value estimation section below). These two gene labels may represent complete or incomplete V(D)J recom- 140

binations (Table 1), but unexpected recombinations can also be detected and are tagged as such. 141

Recombination detection. Given these twomost probable gene labels, the algorithm detects a 5’ zonewith 142

seed occurrences from a given label followed by a 3’ zonewith seed occurrences of another label, but allowing 143

other labels, such as a few (random) J+
H or even V −

B in a significant V +
H zone. 144

Let a = Aff (s,G)±LOC a reduced label sequence. We look for positions t such as δ(t) = |a[1, t]|V − |a[1, t]|J 145

is maximal (many V and few J at the left). This is equivalent to maximize δ′(t) = |a[t, n]|J − |a[t, n]|V (many J 146

and few V at the right), because, for every t, δ(t)− δ′(t) = |a|V − |a|J is constant. The algorithm described on 147

Figure 3 computes, in linear time, both positions i ≤ j that are the first and the last to maximize δ, allowing 148

to detect in the label sequence the 5’ and 3’ zones. 149

p-value estimation. To estimate the significance of the (i, j) zone split and exclude chimeric sequences 150

such as VVVV–-JJJ–-VVV–JJ, the first check is that the 5’ zone has significantly more 5’ seeds than the 3’ 151

1 The actual implementation, inO(ℓ•n) time, builds a bitset for each of the ℓ• ≤ 4ℓ gene labels for at least one seed in the read. The
bitsets of the two most probable gene labels are later reused for the recombinaison detection. The step could however be improved in
timeO(ℓ′n), that is the size of the label sequence, by counting at once the gene labels, then by building the bitsets only for the two most
probable ones.

6

http://gitlab.vidjil.org/-/blob/d158f16771b10626911c6ecac1444ac1c6542728/algo/core/segment.h#L383

zone, that is |a[1, i]|V ≥ τ · |a[j, n]|V with τ = 2, as well as the symmetrical check for the 3’ zone. The p-value 152

of a recombination is then estimated as follows. We call p′V the probability to observe as many labels V in a 153

random label sequence, and estimate p′V = B(pV, |a[1, i]|V, i), where B(p, k, n) =
∑

k≤t≤n

(
n
t

)
pt(1− p)(n−t)

154

is the cumulated probability to have an event of probability p at least k times out of n in a Bernoulli schema. 155

This is a very simple model, as the occurrences of seeds are actually not independent. 156

The probability p to have a label V on fg random seed of weight k (its number of match symbols) is es- 157

timated as p = NV/4
k , where NV is the number of seeds V stored in the index. We similarly define p′J = 158

B(pJ, |a[j, n]|J, n− j + 1), and roughly estimate the p-value of a V-J recombination as p′V + p′J. As a multiple 159

testing correction, this p-value is multiplied by the number of processed sequences, giving an E-value. 160

Altogether, when this E-value is below a given threshold, a V(D)J recombination has been detected. The 161

middle of the recombination zone can then be estimated at around (j+ i+k− 1)/2. The next section details 162

how we precisely designate such a recombination. 163

3 Fast V(D)J designation through seed-based heuristics 164

Designating a V(D)J recombination requires to compare the sequence against all V(D)J germline genes from 165

the detected locus. Precisely aligning a gene against V, (D), and J germline genes can be done with dynamic 166

programming techniques (Figure 4). This alignment is done in time O(Mn), where M is the total length 167

of the considered V and J genes. As V genes are about 300bp in length, this is time consuming. Banded 168

alignments (Chao et al., 1992) bring some improvements, however due to the deletions that occur at the end 169

of V genes or the start of J genes, the constraint on the alignment is imposed on a single part on the gene to 170

prevent restrictions on the number of deletions (Figure 4a and c). However, aligning all the genes of a given 171

locus to a given sequence is still very long, in particular for some locus such as the B-cell heavy chain (IGH) 172

with about 350 genes and alleles. 173

Selecting candidate geneswith seed-basedheuristics. Several V(D)J designationmethods use seed-based 174

heuristics (eg. (Bolotin, Poslavsky, et al., 2015; Thomas et al., 2013; Ye et al., 2013)). We propose here to use the 175

previous filtering phase to speed-up the designation phase. The V(D)J detection heuristic presented in the pre- 176

vious section, giving an information on the gene label in sequences, is extended to identify genes which have 177

seeds occurring in any sequence, in order to determine against which genes the sequence s will be aligned. 178

For each gene g, the accepting states in the Aho-Corasick automaton are now marked with the gene iden- 179

tifier I(g) along with the gene label T (g). Computing, still in linear time, the labels on the gene identifiers, 180

we consider CG(s) = {g ∈ G | |s|I(g) > 0} the set of genes, having at least one seed in the sequence 181

s, and nmax = maxg∈G |s|I(g) the maximal number of seeds from s that matched on a gene. We want to 182

align s against all the genes whose number of matched seeds is close to nmax. This proximity is determined 183

by assuming that the number of matched seeds follows a binomial distribution. Thus we compute a con- 184

fidence interval for nmax (with a confidence interval ofp-value at 99.9% by default) which gives us a range 185

[na, nb]. We finally consider the set of candidate genes C⋆
G(s) = {g ∈ G | |s|I(g) ≥ na}: All the genes from 186

G which have at least na seeds matching on s are aligned against s using dynamic programming as on the 187

Figure 4. The designation algorithm runs in O(M ′n), where M ′ ≤ M is the total size of these candidate 188

genes. For example, on the IGH germlines, a typical value of nmax = 200 on sequences of length about 300 189

gives [na, nb] = [174, 216], and there are usually less than 10 genes/alleles (out of 350+) matching at least 174 190

seeds, thusM ′ ≈ 10× 200≪M ≈ 350× 200. 191

7

101 102 103 104

time (s)

vidjil-new
vidjil-old

mixcr4
mixcr3

random.fa
1,000,000 seq.

0 500 1000 1500

memory (MB)

0.00 0.01 0.02

% detection

Figure 5. Detection results of MiXCR and Vidjil-algo on random sequences (dataset A)

4 Evaluation and results 192

4.1 Datasets 193

Five datasets were used to benchmark the detection and the designation of V(D)J recombinations. 194

Evaluation of the specificity of the detection 195

• A. 106 random DNA sequences, generated with %GC ratios and sequence length similar to the V(D)J IGH 196

germline genes, in which no V(D)J recombination should be found. 197

Evaluation of the sensitivity of the detection 198

• B. 2.3 · 106 synthetic sequences on all loci, both for regular and “incomplete” recombinations. For each 199

possible combination of V, D, and J genes, 10 sequences were generated, by taking the full gene lengths. 200

Insertions and deletions at the junctions were added according to a normal distribution of 5 ± 5, and 201

substitutions to the whole sequence on 2% of the nucleotides to take into account sequencing artifacts 202

but also individual variations. We also generated datasets with 5% and 10% substitutions (resp. B5% 203

and B10%). 204

• C. TRB simulated sequences from the benchmark of Afzal et al. (2019). We focus on their datasets with 205

more than a single clone and with some errors (low, .1%, and medium, 1%). Each dataset is made of 1M 206

sequences of 250bp. For each error rate, we average the results obtained for the datasets with varying 207

level of clonal populations, as they were very similar. 208

Evaluation of the correctness of the V(D)J designation 209

• D. 1,3511,365 sequences from LIGM-DB (Giudicelli, Duroux, et al., 2006), focusing on the two most rep- 210

resented loci in LIGM-DB, IGH and IGK. 211

• E. 301 sequences from patient data with curated VDJ designations (Salson et al., 2016). 212

4.2 Software 213

Methods described here were implemented in C++ in a development Vidjil-algo version2and compared to 214

Vidjil-algo 2018.02. In the following figures and tables, for short we refer to the former as vidjil-new and to the 215

latter as vidjil-old. Webenchmarked againstMiXCR 3 (versions 3.0.13 and 4.4.1) (Bolotin, Poslavsky, et al., 2015). 216

MiXCR is widely used, and, although it is not open-source, its code is available. After systematic comparison be- 217

tween several V(D)J analysis tools, MiXCRwas assessed by Afzal et al. (2019) as themost balanced generic tools 218

in terms of flexibility and accuracy. Note that MiXCR and Vidjil-algo were launched on the same germline se- 219

quences coming from the same IMGTGENE-DB version. The four programswere launched on one thread on a 220

2This version is available at feature-a/aho-alignment-free-multi-loci.
3MiXCR code is available at https://github.com/milaboratory/mixcr, but is not released under an open-source licence.

8

http://gitlab.vidjil.org/-/tree/feature-a/aho-alignment-free-multi-loci
https://github.com/milaboratory/mixcr

102 103 104 105

time (s)

vidjil-new
vidjil-old

mixcr4
mixcr3IGH

2,042,040 seq.

0 2000 4000 6000

memory (MB)

98.50 99.00 99.50 100.00

% detection

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3IGK

9,720 seq.

0 1000 2000 3000 96.00 98.00 100.00

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3IGL

10,010 seq.

0 1000 2000 90.00 95.00 100.00

100 101 102 103
vidjil-new
vidjil-old

mixcr4
mixcr3TRA

70,040 seq.

0 2000 4000 85.00 90.00 95.00 100.00

100 101 102 103
vidjil-new
vidjil-old

mixcr4
mixcr3TRB

68,160 seq.

0 2000 4000 99.40 99.60 99.80 100.00

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3TRD

2,520 seq.

0 500 1000 99.25 99.50 99.75 100.00

100 101 102
vidjil-new
vidjil-old

mixcr4
mixcr3TRG

1,140 seq.

0 500 1000 99.90 99.93 99.95 99.98100.00

Figure 6. Detection by MiXCR and Vidjil-algo on synthetic V(D)J recombinations on all human loci (dataset B).
The X-axis on the time diagrams is logarithmic.

9

101 102 103 104

time (s)

vidjil-new
vidjil-old

mixcr4
mixcr3

Low error
1,000,000 seq.

0 2000 4000

memory (MB)

99.90 99.93 99.95 99.98 100.00

% detection

101 102 103 104
vidjil-new
vidjil-old

mixcr4
mixcr3

Medium error
1,000,000 seq.

0 2000 4000 99.90 99.95 100.00

Figure 7. Detection on Afzal et al. (2019) TRB benchmark (dataset C) by MiXCR and Vidjil-algo.

server with 2 Intel XeonGold 6130 processors (2.10GHz, 32MB cache) and 128GBRAM. The benchmark is fully 221

reproducible (from the retrieval of the data to the production of the paper’s figures) using Snakemake (Köster 222

and Rahmann, 2012), with the instructions provided at https://www.vidjil.org/data#2024-pcicompbio. 223

4.3 V(D)J detection 224

Specificity and sensitivity. We restrict MiXCR to launch the smallest analysis it can do – performing a V(D)J 225

designation on each sequence. Thus the results they produce are much more detailed than what Vidjil-algo 226

provides. On the opposite, Vidjil-algo first tries to identify a V(D)J recombination, then determines an identifier 227

for this V(D)J recombination and clusters all sequences sharing the same identifier into clonotypes. Then, only 228

the 100 most abundant clonotypes are designated (which is not discussed in this section). 229

On random sequences (dataset A, see Figure 5), only MiXCR detects spurious V(D)J recombinations among 230

the million random sequences. However we note a large improvement in specificity, with a two-fold improve- 231

ment between MiXCR 3 and MiXCR 4. 232

Sensitivity is assessed with the dataset B (Figure 6), consisting of randomly generated V(D)J recombinations 233

with 2% substitutions. Our new algorithm is very sensitive to detect those recombinations. It is the most 234

sensitive among all the tested tools. It is the only one to reach 100% sensitivity on all loci. This is a noticeable 235

improvement compared to previous versions of Vidjil-algo. In Supplementary File 1, figure 1, we show that 236

even with 10% errors the new heuristic shows very good results. On average, on the complete loci, it reaches 237

99.1% detection which is better than Vidjil-old (66.7%) and MiXCR 3 (94.8%) but less than MiXCR 4 (100.0%). 238

In Supplementary File 1, figure 3, we show that with 5% errors (20% of them being indels), the detection ratios 239

of Vidjil-new and MiXCR4 are mainly unchanged. Vidjil-old is much more affected by indels. This is due to the 240

spaced seeds used in Vidjil-algo. In the Vidjil-old version, we couldn’t use seeds of different lengths for V and 241

J, thus the seeds are too long in the J gene to still have a significant number of hits matching in spite of the 242

indels. This show that our new approch is much more robust to noisy data. 243

On the TRB benchmark from Afzal et al. (2019) (dataset C, Figure 7) our new algorithm is among the most 244

sensitive: it detects all the recombinations in the low error condition (.1%) and more than 99.991% in the 245

medium error condition (1%). In this second condition, this is slightly less than MiXCR3 (99.996%) but more 246

than MiXCR 4 (99.94%). On IGH and IGK recombinations from LIGM-DB (dataset D, Figure 8), MiXCR 3 gives 247

again the best results for the detection. However Vidjil-algo’s new heuristic improves the former one, and for 248

IGH, is now much closer to MiXCR 3 results. The improvement is less pronounced on IGK. However in both 249

cases, our new heuristics gives better detection results than MiXCR 4. The reason why IGK results are worse 250

is that IGK recombined sequences in LIGM-DB are very short on the J side, with 60% of the J genesequences 251

being at most 20bp long and even 20% sequences at most 10bp long, whereas germinal IGKJ genes are 38- 252

39bp long. Among the 68 sequences that Vidjil-algo did not detect and MiXCR 3 did, almost all of them (6768) 253

had an IGKJ gene 12bp long or shorter. With so short sequences, a single mutation may prevent any spaced 254

seed to match the J sequence. 255

On the dataset E, results are shown in Table 2. Results are very similar between the four programs for 256

10

https://www.vidjil.org/data#2024-pcicompbio

locus nb. seq. mixcr3 mixcr4 vidjil-old vidjil-new
IGH 95 95 94 93 92

IGK 2 2 2 2 2

IGL 2 2 2 2 2

TRA 1 1 1 1 1

TRB 16 15 15 16 16

TRD 18 18 18 18 18

TRG 31 30 31 30 31

IGH+ 23 23 23

IGK+ 29 29 29

TRA+D 28 28 26

TRB+ 20 19 19

TRD+ 31 25 27

Table 2. Detection on MiXCR, and Vidjil-algo on curated V(D)J designations (dataset E)

200 400 600 800 980
Number of sequences

vidjil-new
vidjil-old

mixcr4
mixcr3

IGH

80 160 240 320371
Number of sequences

IGK
Detection
Designation

Figure 8. Correct detection and designation of V(D)J recombinations on LIGM-DB version LIGMDB_V12
(dataset D) with MiXCR and Vidjil-algo.

complete recombinations (IGH, IGK, IGL, TRA, TRB, TRD, TRG). As expected, only Vidjil-algo detects some in- 257

complete recombinations, as MiXCR does not deal with them. The drop in detection in the new version on 258

TRA+D and TRD+ is not an algorithmic issue but rather an engineering one. 259

Speed andmemory. On top of that, the new algorithm ismuch quicker than the former version of Vidjil-algo 260

(at least threefour times quicker on large enough datasets). For datasets A, B, and C, it is between 15 and 4020 261

and 30 times quicker than MiXCR. The difference is less striking on small datasets due to the construction of 262

the Aho-Corasick automaton at each startup. In spite of this data structure, thememory consumption is lower 263

than before because it used lookup tables (that were sparse). MiXCR almost systematically has the highest 264

memory consumption, apart from dataset with a large number of distinct recombinations (IGH on Figure 6). 265

4.4 V(D)J designation 266

V(D)J designations predicted by the software, taking the same reference genes, are compared to the ref- 267

erence datasets D and E (Table 3 and Figure 8). Only the names of the V and of the J genes are checked (or 268

D and J genes for incomplete recombinations). As some genes are very similar, designating one gene is very 269

dependant to fine tunings in the scoring of the sequence comparisons. The output of both software could 270

thus be considered correct in some cases even when departing from those reference datasets – and note that 271

the dataset E already contains some alternative acceptable designations. 272

Both Vidjil-algo andMiXCR designate the same V(D)J recombinations than in the reference datasets in most 273

of the sequences. Designations on the complete loci (IGH, TRB, TRD, TRG) are particularly close to the cu- 274

rated dataset E, with more than 90% correct designations, showing that the software do not have any specific 275

difficulty to identify the V and J genes involved. Surprisingly, MiXCR 4 with the default parameters does not 276

designate some sequences in the way that MiXCR 3 did. This may come from stricter parameters to improve 277

11

locus nb. seq. mixcr3 mixcr4 vidjil-old vidjil-new
IGH 95 89 87 88 89

IGK 2 2 2 2 2

IGL 2 2 2 2 2

TRA 1 1 1 1 1

TRB 16 14 15 14 15

TRD 18 15 14 15 13

TRG 31 28 28 28 28

IGH+ 23 1 21 20

IGK+ 29 19 18

TRA+D 28 2 23 21

TRB+ 20 2 19 19

TRD+ 31 28 27

Table 3. Correct designation on V(D)J recombinations on manually curated V(D)J sequences (dataset E) with
MiXCR and Vidjil-algo. nb. seq. is the number of sequences in the dataset with the given locus.

specificity, as it was also shown on random sequences in Figure 5. Note also that in some cases (see IGK in 278

Figure 8, dataset D), the detection step of Vidjil-algo can assign borderline sequences to an incorrect locus. 279

The figure for dataset E is shown in Supplementary file 1, figure 2. During the designation step such an error 280

would be fixed. 281

Anyway, while staying very specific, the new Vidjil-algo designation is much closer to the best results that 282

were obtained by MiXCR 3, and even slightly better on the IGH dataset. Moreover, as expected, only Vidjil is 283

capable of handling incomplete recombinations (Table 3), with 79% correct designations on IGH+, IGK+, and 284

TRB+ incomplete recombinations, the TRD+/TRA+D recombinations being more challenging. 285

On the E dataset, our new heuristic to avoid the alignment against many genes leads to a more than 10 286

fold improvement in time consumption. Thus, Vidjil time consumption of designation with our new heuristic 287

becomes comparable to MiXCR, while Vidjil-algo didn’t optimize the alignment by itself (by using SIMD for 288

instance). Note that in the classic usage, and due to its approach, Vidjil-algo can limit the designation to the 289

100 most abundant clonotypes. 290

5 Discussion and perspectives 291

Studying immune repertoire by high-throughput sequecing for immunological or onco-hematological ap- 292

plications requires adapted methods. We introduced a seed-based alignment-free algorithm, based on an 293

Aho-Corasick automaton, to detect in a single pass, in almost linear time (O(ℓ′n))O(n) time, V(D)J recom- 294

binations coming from different loci, as well as a filtering algorithm improving the designation of V(D)J gene 295

segments from a recombination. Both algorithms are fast and sensitive, and comewith a statistical evaluation 296

of their results, including on irregular or incomplete recombinations. 297

Our solution is another example where alignment-free approaches, here seed-based heuristics, provide 298

pertinent results to analyze huge datasets, using a fraction of the resources required by alignment-based 299

approaches. With this contribution, we almost have a linear processing of sequences. Other improvements 300

on time or memory consumption are still possible but, as shown in our benchmarks, improvements on the 301

quality of the results can only be marginal. 302

Our new version of Vidjil-algo is hence one of the fastest available programs for analyzing large datasets 303

with billions of immune recombinations, and is moreover released under an open-source licence. The two 304

algorithms provided an up to 510× speed-up compared to the previous Vidjil-algo version, still keeping excel- 305

lent sensibility and specificity and a lowmemory footprint. Other software providemore information – notably 306

the V(D)J designation of each sequence – but they are not necessarily needed in several applications. We also 307

show that Vidjil-algo is highly effective to identify and filter sequences that do not exhibit V(D)J recombinations. 308

12

This is a feature of interest to analyze large sequencing datasets, such as RNA-seq data that contain very few 309

V(D)J recombinations. 310

Vidjil-algo is already used in reference protocols dealing with sequencing and analyzing immunogenetical 311

data (Langlois de Septenville et al., 2022; Villarese et al., 2022). With the rise of large-scale analysis of public 312

datasets (Edgar et al., 2022), Vidjil-algo could become one of the preferred methods for V(D)J detection on 313

such large-scale analyses. In a second time, MiXCR could be used to obtain detailed informations on the V(D)J 314

recombinations detected by Vidjil-algo. 315

As the Aho-Corasick automaton stores words projected from different seeds, seed optimization could be 316

further studied. The smaller the seed, the more sensitive, but the less specific. Gene repertoires have very 317

different sizes according to the locus, with for example more than 200 kB of sequences on IGH V-J and just a 318

few nucleotides for the TRD+ Dd2/Dd3 (see Supplementary Figure 1). In the assessed version, shorter seed 319

sizes were selected for J genes, enabling a better recognition. Further work could optimize the seed lengths 320

and weights depending on each recombination system. 321

More generally, research could include efficient detection and designation of recombined sequences with 322

three or more segments, as well as improving again the statistical evaluation of recombinations. 323

Acknowledgments 324

We thank the Mésocentre de Lille for their computing resources, and Inria for the support as well as com- 325

puting resources. We also thank Nika Abdollahi (Abdollahi, 2021) and the Bonsai team for discussions on 326

alignment-free methods. We finally thank the VidjilNet consortium, users of Vidjil as well as the EuroClonality- 327

NGS consortium. Their feedback helped us improve the algorithm. 328

Conflict of interest disclosure 329

Mathieu Giraud and Mikaël Salson are members of the Scientific and Technical Committee of the not-for- 330

profit VidjilNet consortium. They do not receive any financial compensation from that consortium. The au- 331

thors of this preprint declare that they have no financial conflict of interest with the content of this article. 332

References 333

Abdollahi N (July 2021). B cell receptor repertoire analysis in clinical context : new approaches for clonal group- 334

ing, intra-clonal diversity studies, and repertoire visualization. PhD thesis. Sorbonne Université. 335

Afzal S, I Gil-Farina, R Gabriel, S Ahmad, C von Kalle, M Schmidt, and R Fronza (2019). Systematic comparative 336

study of computational methods for T-cell receptor sequencing data analysis. Briefings in Bioinformatics 20, 337

222–234. https://doi.org/10.1093/bib/bbx111. 338

Aho AV and MJ Corasick (1975). Efficient string matching: An aid to bibliographic search. Communications of 339

the ACM 18, 333–340. 340

Arnaout R, W Lee, P Cahill, T Honan, T Sparrow, M Weiand, C Nusbaum, K Rajewsky, and SB Koralov (2011). 341

High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans. PLoS ONE 6, e22365. 342

Benichou J, R Ben-Hamo, Y Louzoun, and S Efroni (2012). Rep-Seq: uncovering the immunological repertoire 343

through next-generation sequencing. Immunology 135, 183–91. 344

Bolotin DA, M Shugay, IZ Mamedov, MAT Ekaterina V Putintseva, IV Zvyagin, OV Britanova, and DM Chudakov 345

(2013). MiTCR: software for T-cell receptor sequencing data analysis. Nature Methods 10, 813–814. https: 346

//doi.org/10.1038/nmeth.2555. 347

Bolotin DA, S Poslavsky, I Mitrophanov, M Shugay, IZ Mamedov, EV Putintseva, and DM Chudakov (2015). 348

MiXCR: software for comprehensive adaptive immunity profiling. en. Nature Methods 12, 380–381. ISSN: 349

1548-7091. https://doi.org/10.1038/nmeth.3364. 350

13

https://doi.org/10.1093/bib/bbx111
https://doi.org/10.1038/nmeth.2555
https://doi.org/10.1038/nmeth.2555
https://doi.org/10.1038/nmeth.2555
https://doi.org/10.1038/nmeth.3364

Brown DG (2008). Bioinformatics Algorithms: Techniques and Applications. In: chap. A survey of seeding for 351

sequence alignment, pp. 126–152. 352

Brüggemann M, M Kotrová, H Knecht, J Bartram, M Boudjogrha, V Bystry, G Fazio, E Froňková, M Giraud, A Gri- 353

oni, et al. (2019). Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene 354

recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS val- 355

idation study. Leukemia. https://doi.org/10.1038/s41375-019-0496-7. 356

Cavé H, J van der Werff Ten Bosch, S Suciu, C Guidal, C Waterkeyn, J Otten, M Bakkus, K Thielemans, B Grand- 357

champ, E Vilmer, B Nelken, M Fournier, P Boutard, E Lebrun, FMéchinaud, R Garand, A Robert, N Dastugue, 358

E Plouvier, E Racadot, A Ferster, J Gyselinck, O Fenneteau, M Duval, G Solbu, and AMManel (1998). Clinical 359

significance of minimal residual disease in childhood acute lymphoblastic leukemia. New England Journal 360

of Medicine 339, 591–598. 361

Chao KM, WR Pearson, and WMiller (1992). Aligning two sequences within a specified diagonal band. Bioinfor- 362

matics 8, 481–487. 363

Duez M, M Giraud, R Herbert, T Rocher, M Salson, and F Thonier (2016). Vidjil: A web platform for analysis of 364

high-throughput repertoire sequencing. PLOS One 11, e0166126. https://doi.org/10.1371/journal.pone. 365

0166126. 366

Edgar RC, J Taylor, V Lin, T Altman, P Barbera, D Meleshko, D Lohr, G Novakovsky, B Buchfink, B Al-Shayeb, 367

et al. (2022). Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147. 368

Giraud M, M Salson, M Duez, C Villenet, S Quief, A Caillault, N Grardel, C Roumier, C Preudhomme, and M 369

Figeac (2014). Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing. 370

BMC Genomics 15, 409. https://doi.org/10.1186/1471-2164-15-409. 371

Giudicelli V, D Chaume, G Mennessier, HH Althaus, W Müller, J Bodmer, A Malik, and MP Lefranc (1998). IMGT, 372

the international ImMunoGeneTics database: a new design for immunogenetics data access. In: MED- 373

INFO’98. IOS Press, pp. 351–355. 374

Giudicelli V, PDuroux, CGinestoux, G Folch, J Jabado-Michaloud, DChaume, andMPLefranc (2006). IMGT/LIGM- 375

DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. 376

Nucleic acids research 34, D781–D784. 377

Jones NC and PA Pevzner (2004). An introduction to bioinformatics algorithms. MIT Press. ISBN: 0-262-10106-8. 378

Köster J and S Rahmann (2012). Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 379

2520–2522. 380

Kuchenbecker L, M Nienen, J Hecht, AU Neumann, N Babel, K Reinert, and PN Robinson (2015). IMSEQ – a 381

fast and error aware approach to immunogenetic sequence analysis. en. Bioinformatics 31, btv309. ISSN: 382

1367-4803, 1460-2059. https://doi.org/10.1093/bioinformatics/btv309. 383

Langlois de Septenville A, M Boudjoghra, C Bravetti, M Armand, M Salson, M Giraud, and F Davi (2022). Im- 384

munoglobulin Gene Mutational Status Assessment by Next Generation Sequencing in Chronic Lympho- 385

cytic Leukemia. In: Immunogenetics. Ed. by Langerak AW. Vol. 2453. Methods inMolecular Biology. Springer, 386

pp. 153–167. https://doi.org/10.1007/978-1-0716-2115-8_10. 387

LefrancMP (2011). IMGT, the International ImMunoGeneTics Information System. Cold Spring Harbor Protocols 388

2011, pdb.top115. https://doi.org/10.1101/pdb.top115. 389

Marcou Q, T Mora, and AM Walczak (2018). High-throughput immune repertoire analysis with IGoR. Nature 390

communications 9, 561. 391

Ralph DK and FAM Iv (Jan. 2016). Consistency of VDJ Rearrangement and Substitution Parameters Enables 392

Accurate B Cell Receptor Sequence Annotation. PLOS Comput Biol 12, e1004409. ISSN: 1553-7358. https: 393

//doi.org/10.1371/journal.pcbi.1004409. 394

Salson M, A Caillault, M Duez, Y Ferret, A Fievet, M Kotrova, F Thonier, P Villarese, S Wakeman, GWright, andM 395

Giraud (2016). A Dataset of Sequences with Manually Curated V(D)J Designations. Workshop on Immune 396

Repertoire Sequencing : Bioinformatics and Applications in Hematology and Immunology (RepSeq 2016). 397

14

https://doi.org/10.1038/s41375-019-0496-7
https://doi.org/10.1371/journal.pone.0166126
https://doi.org/10.1371/journal.pone.0166126
https://doi.org/10.1371/journal.pone.0166126
https://doi.org/10.1186/1471-2164-15-409
https://doi.org/10.1093/bioinformatics/btv309
https://doi.org/10.1007/978-1-0716-2115-8_10
https://doi.org/10.1101/pdb.top115
https://doi.org/10.1371/journal.pcbi.1004409
https://doi.org/10.1371/journal.pcbi.1004409
https://doi.org/10.1371/journal.pcbi.1004409

Shlemov A, S Bankevich, A Bzikadze, MA Turchaninova, Y Safonova, and PA Pevzner (2017). Reconstructing 398

antibody repertoires from error-prone immunosequencing reads. The Journal of Immunology 199, 3369– 399

3380. 400

Thomas N, J Heather, W Ndifon, J Shawe-Taylor, and B Chain (2013). Decombinator: a tool for fast, efficient 401

gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542–550. 402

Tonegawa S (1983). Somatic generation of antibody diversity. Nature 302, 575–581. 403

Villarese P, C Abdo,MBertrand, F Thonier,MGiraud,MSalson, and EMacintyre (2022). One-StepNext-Generation 404

Sequencing of Immunoglobulin and T-Cell ReceptorGeneRecombinations forMRDMarker Identification in 405

Acute Lymphoblastic Leukemia. In: Immunogenetics. Methods and Protocols. Ed. by Langerak AW. Vol. 2453. 406

Methods in Molecular Biology. Springer, pp. 43–59. https://doi.org/10.1007/978-1-0716-2115-8_3. 407

Yang X, D Liu, N Lv, F Zhao, F Liu, J Zou, Y Chen, X Xiao, J Wu, P Liu, J Gao, Y Hu, Y Shi, J Liu, R Zhang, C Chen, 408

J Ma, GF Gao, and B Zhu (2014). TCRklass: A New K-String-Based Algorithm for Human and Mouse TCR 409

Repertoire Characterization. Journal of Immunology 194. https://doi.org/10.4049/jimmunol.1400711. 410

Ye J, N Ma, TL Madden, and JM Ostell (2013). IgBLAST: an immunoglobulin variable domain sequence analysis 411

tool. Nucleic Acids Research 41, W34–W40. https://doi.org/10.1093/nar/gkt382. 412

15

https://doi.org/10.1007/978-1-0716-2115-8_3
https://doi.org/10.4049/jimmunol.1400711
https://doi.org/10.1093/nar/gkt382

	Introduction
	Linear detection of multi-loci V(D)J recombinations
	Fast V(D)J designation through seed-based heuristics
	Evaluation and results
	Datasets
	Software
	V(D)J detection
	V(D)J designation

	Discussion and perspectives

