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Abstract

Estimating the date at which an epidemic started in a country and the date at which it can end
depending on interventions intensity are important to guide public health responses. Both are po-
tentially shaped by similar factors including stochasticity (due to small population sizes), super-
spreading events, and memory-effects'memory effects’ (the fact that the occurrence of some events,
e.g. recovering from an infection, depend on the past, e.¢. the number of days since the infection).
Focusing on COVID-19 epidemics, we develop and analyse mathematical models to explore how
these three factors may affect early and final epidemic dynamics. Regarding the date of origin, we
find limited effects on the mean estimates, but strong effects on their variances. Regarding the date
of extinction following leek-dewn-lockdown onset, mean values decrease with stochasticity or with
the presence of superspreading events. These results underline the importance of accounting for

heterogeneity in infection history and transmission patterns to make-aceurate-predictionsregarding
epidemictemporal-estimatesaccurately capture early and late epidemic dynamics.



s 1 Introduction

-

20 The ability to make robust epidemiological inferences or predictions strongly relies on the law of large
21 numbers, which buffers the variability associated with individual processes. Mest-Many models of
22 infectious diseases spread are deterministic and therefore assume that the number of infected hosts is
23 large and above what has been termed the ‘outbreak threshold” [12]. This assumption is violated at the
2« beginning and end of an epidemic, where stochasticity may have a strong effect [5].

25 In this study, we tackle two issues. First, we wish to estimate the date of origin of an epidemic in
26 a country, focusing on the case of COVID-19 outside China. This question is important because the
27 infection being imported, some cases may be detected before the reported beginning of an epidemic
28 wave, which is somehow counter-intuitive to an audience not familiar with stochasticity. Conversely;

20 eryptietransmission-ean-take Furthermore, transmission often takes place before an epidemic wave is
s detected, as observed-thankstoshown in several places using SARS-CoV-2 genomic datain-Washington

a1 state (USA)-in-Feb-2020-{3], e.g. Washington state in the USA [3] or France [6]. Second, we investigate
s2 how many days strict control measures need to last to ensure that the prevalence falls below key thresh-
ss olds. Despite its public health implications, this latter question has rarely been investigated. There are
s some exceptions, for instance in the context of poliomyelitis [9], Ebola virus disease [26], and MERS
s [21] epidemics;but-these-. However, these estimates neglect superspreading events and/or do not
s include non-Markovian effects (i.e. memory effects). Indeed, they often rely on ordinary differential

7 equations, meaning that the probability of an event to occur (e.g. recovering from an infection) does
ss not depend at all on the past (e.g. the number of days since the infection started). Recently, however,

so it has been shown that incorporating secondary cases heterogeneity can significantly lower the delay

40 until an Ebola virus disease outbreak can be considered to be over [8].

« Maintaining the lockdown so as to reach ‘zero-COVID requires extended effort because the incidence
« might oscillate at a low value due to stochasticity for a long period. However, in practice, and as
« illustrated by several countries, lockdown measures could be eased after the epidemic reaches a sufficiently
s low incidence. Indeed, when the number of cases is low enough, stricter contact tracing, as well as local
4 control measures can be sufficient to stop the virus spread. For instance, in Taiwan or South Korea, the
s epidemic was controlled for months as long as the incidence was kept below 20 new cases per day [18]
. In New Zealand, control measures were lifted only when the incidence reached 2 cases per day. This
@ is why we investigate the time for incidence to reach given thresholds that can be greater than 0.

49 The COVID-19 pandemic has-led to an unprecedented publication rate of mathematical models,
so0 several of which involve stochasticity. For instance, Hellewell et al. [14] analysed the initial steps
st of the outbreak to estimate the fraction of the transmission chains that had to be tracked to control
s2 the epidemics. Their results depend on the value of the basic reproduction number (denoted #yRy),
ss which corresponds to the mean number of secondary infections caused by an infected individual in
s« an otherwise fully susceptible population [2], but also on individual heterogeneity. Indeed, if few
s5 individuals tend to cause a large number of secondary infections while the majority tends to cause none,
ss the probability of outbreak emergence is much lower than if all individuals cause the same number of
s7 secondary infections [17]. Accounting for this property, a study used the early COVID-19 outbreaks
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incidence data in different countries to estimate the dispersion of the distribution of individual %y
Ry [10]. Finally, Althouse et al. [1] have also used stochastic modelling to explore the role of super-

spreading events in the pandemic and its consequences on control measures.

Here, we develop an original discrete stochastic (DS) model, which features some of the known
characteristics of the COVID-19 epidemics. In-partieularThe model is non-Markovian, which means
that individual histories matter for the dynamics. More specifically, the probability that an event
occurs (e.g. infecting another host) depends on the number of days spent in a state (e.g. being infected).
Furthermore, following earlier studies [14], we account for the fact that not all hosts transmit on the
same day post-infection. This is captured by assuming a distribution for the generation time, which is

the time between infection dates of an ‘infector’ and an infected person. Since the time of infection is

complicated to estimate, we approximate the generation time by the serial interval, which is the time
between the onset of the symptoms in the ‘infector” and that in the infected person [19, 13]. We also

allow for heterogeneity in transmission patterns by assuming a negative binomial distribution of the

secondary cases. FurthermoreTo investigate the importance of stochasticity, we had to use deterministic
models in addition to ours. To have memory effects in a deterministic setting, we reanalysed an earlier
deterministie non-Markovian model [24] by setting the date of origin of the epidemic as the main free

parameter. Finally, to remove both memory effects and stochasticity, we analyse a classical determin-
istic Markovian model, which is commonly used to analyse COVID-19 epidemics [11]. Bycomparing

By comparing the outputs of these models, we explore the importance of stochasticity, individual
heterogeneity, and non-Markovian effects on the estimates of the dates of origin and end of a nation-
wide COVID-19 epidemic, using France as a test case and mortality data because of its extensive sam-

pling compared to case incidence data.

2 Methods

2.1 The Discrete Stochastic (DS) model

Our model simulates the number of newly infected individuals per day (i.e. the daily incidence) as an
iterative sequence following a Poisson distribution. We assume that each-infected-individual-eauseson
average g secondarycasesthe average number of secondary cases is equal to Ry and that the host pop-

ulation is homogeneously mixed (i.e. no spatial structure),an-assumption-thatis-. These assumptions
are relevant if a small fraction of the populatlon is infected [27]. We meodel-the number-of new-infected

More specifically, each individual is assumed to cause a random number of secondary infections
throughout his/her infection, depending on his/her infectiousness (/3). Here, infectiousness represents

the relative infectious contact rate of an individual. It summarises both biological aspects (efficiency of

transmission per contact, susceptibility of the recipients), and the contact rate of the individual, durin
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the whole infectious period. Secondary infections occur randomly several days after contracting the
disease. The probability of infecting someone some days after getting the disease is captured by the
eneration time, which we approximate using the serial interval [19].

Let (¥7)en-w, be a random variable describing the probability of infecting someone a days after
contracting the disease. An individual infected since a days infects new individuals atarate Rg x 3 x w,
during that day. Therefore, the number of secondary infections occurring a days after being infected,
which is considered as a count of independent events, follows a Poisson distribution parameterized by
Ro_x_B_x w,. From the additive property of the Poisson distribution, we find that the mean number of
secondary cases during the entire infectious period is equal to the individual infectiousness. We then
repeat this process for all individuals to determine the disease global progression. |

Let Y} be the random variable describing the incidenceever-time, i.e. the number of new infections,

on day ¢, t being the number of days since initialisation of the process. For-all-t+=N;the sequence-of
¥rhendissueh-that The sequence of Y} is defined using the Poisson additive property:

t

Y;
Y;+1 ~ Poisson <50J7t Z Wi—i 2 F@m) (1)
k=1

1=0

average normalized contact rate in the populatlon at day ¢, a&éﬁ—t&%he%efe&e%m%eeﬁeﬁﬁ&m
the infectiousness of individual k, infected at time-day i-—The modelisnon-Markovian, which-means
that-individual-histories matter for the dynamies-More specifically,, and w,_; is the probability of an
WWMW Pfebﬂbfh’ff’fha’fﬂﬁeveﬂ%ee&ws

I

of the infection{19}-).

We consider two scenarios (a) without and (b) with individual heterogeneity. If we denote by %%

the distribution of random variables {#5 ;) jenzwhere £ isthe force- of infeetion: accountin

for the infectiousness of an individual x -infected at day y, then, in each scenario we assume that:

t
V;+1~ Poisson <%’o M| Wi Yz>

1=0

b) %% is a Gamma distribution with shape parameter £ = 0.16 and mean %Ry, implying that
individuals are heterogeneous in infeetivity-infectiousness and/or infection-durationcontact rate,
which can lead to ‘superspreading’ events. We use the shape parameter (k) value estimated for a
SARS outbreak in 2003 [17], which is consistent with early-estimates for SARS-CoV-2 epidemics
[10, 1, 16, 25].



¢) Aisa Dirac distribution, noted §(1), implying that there is no heterogeneity and individuals have

the same infectiousness and infection duration distribution. This is equivalent to £k — +o0 in the
revious scenario. The sequence (Y; then simplifies into:

t
Xtvti" Poisson (R(] Nt Z Wi—i E) (2)
i=0

120 To model the intensity-of-the-eontrel-control intensity over the epidemic at time ¢ such as, for in-
121 stance, a national leek-downlockdown, we vary the contact rate parameter n,. We assume that r, is

122 piecewise constant and that its discontinuities capture changes in public health peliey—policies (see
123 Figure ??).

Overall, we define the temporal reproduction number (42 R;) at time ¢ such that

ARy = n E[F|E[H] = me 7 Ro ©)

124 2.2 Beginning of the epidemic wave

125 To infer the starting date of the epidemic wave, we run our discrete stochastic (DS) algorithm starting
126 from one infected individual until the infection dynamic becomes deterministic, i.e. the law of large
127z numbers applies. We set the mortality incidence threshold to 100 daily eeathscases, which was reached

128 on Mareh-23 inFraneeMarch 2020 in France. Neglecting the delay from infection to death, this would

129 correspond to a daily incidence of more than 11,000 new cases according to the infection fatality ratio;
130 a value much higher than the outbreak threshold above which a stochastic fade-eutfade-out is unlikely

131 [12]. We use independent estimates for the other parameters and perform a sensitivity analysis, shown

12 in the Appendix.

If we write X; the number of individuals infected at time ¢t who will die:

X; ~ Binomial(Y;, p) 4)

133 We-then—chese-For each of the X; individuals, the day of death for-each-individual-of X+is set
13« by drawing a time from infection to death following 0, i.e. a Gamma distribution. 6 was previousl

135 estimated on French hospital data [24] (Table ??), and its estimate compare very well with other independent
136 estimates made from contact tracing data [15].

137 We repeat the algorithm 10,000 times in-erder-to obtain a stable distribution of starting dates and

138 discard epidemics that die out before reaching the threshold incidence.



139 To allow for comparison with empirical data, we first smooth-out-week-end-under-reporting by
1 eomputing-compute a sliding average of this time series over a 7-days window.

141 Finally, we assume that the consequences of the lock-downlockdown, which was initiated in France
12 on March 17, did not affect the death incidence time series until the very end of March because of the
s delay between infection and death, which we estimate in France to be more than 11 days for 95% of the
144 cases [24].

s 2.3 End of the epidemic wave

146

147

148

149 Here, we estimate how many additional days of leck-down-lockdown would have been necessary
150 to reach ep1dem1c extinction for various }eek-de&ﬂ+m%eﬂsﬁypes{—May44—hﬂr%hefeﬂe»\ﬂﬂgweﬁe%e
151 D =557 artatio 7O O &o 3 &a O O a—10 do
152 M%Mﬂlmmm
153 contact rate is ner = 0.243, and we start our simulation on May 11);-defined-as-
¢ Zt TIFR
— "IFR

154

155 when the lockdown measures were partially lifted (i.e 55 days of lockdown). To avoid the unnecessary

156 accumulation of uncertainties, we initialise the model with incidence values obtained from a discrete-

157 time non-Markovian model [24]

158

for the past 15 days

159 before the start of the simulation, in France. This threshold arises directly from the choice of the serial
160 mﬁ%wﬁs than 15 daysag&ﬁﬂa*hemaﬁeaﬂv

161 e ,using the generation
162 WAALTab]e 77)

163 We then use a Monte-Carlo procedure to estimate key features of the sequence-time series (Y;)¢,

1« such as the mean extinction time or the asymptotie-cumulative extinction probability. This is done
s by running 10,000 independent and identically distributed simulations of our process for each set of
166 parameters. Westockeach-of-these-

167 ‘We analyse the 10,000 trajectories-and-then-analyse-these trajectories-as-follow-—The seripts-used-for
168 thesimulations-eanbefound-inthe supplementary materials—

169 resulting trajectories as follows. First, we estimate the distribution of 7, which is the minimal
1m0 teek-dewn-durationrandom variable corresponding to the minimal lockdown duration (in days) such
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that the incidence is always null

%mmmlmm
rate to for the first 55 days. We then set the contact rate to a fixed value (greater or equal than
until extinction is reached. As long as the effective reproductive number is lower than 1, the time to

T = in'fl{Yk = 0;Vk > s} (5)
ElS

Second, we study the effect of finite loek-down-lockdown extensions on the probability of extinc-
tion and-fectus-on-to understand the risk of epidemic rebound upon leek-dewn-lockdown lifting. For
simplicity, we assume e = that control measures are completely
lifted once the lockdown is over. The probability of having no new cases at time ¢ (po(t)) is estimated

using the following formula

1 N
N kZl Livi-o) ©

where N is the number of simulations performed and Y;* the number of newly infected individuals in
the k-th-" simulation at time t.

Third, we study the effect of initiating the leek-down first lockdown one month or two weeks earlier
in-the-epidemie(in France, on February 17 or March 03 respectively) on the distribution of the time

to extinction (7). For comparison purposes, we assume that the-spread-of-the-dynamieisequal-to
nrr-—0-24forin any case the first 55 days of lockdown have the same contact rate (7:<55 = and then

extend the leek-down-lockdown indefinitely with variable intensities to estimate the time to extinction

(7) as described previously (see-equation 5).

2.4 Alternative models

To further study the effects of stochasticity, non-Markovian dynamics, and superspreading, we imple-
mented two additional-deterministic models. The first is Markovian, i.e. memoryless, and is based on
a simpler model derived from a classical SEIR model. The second has a discrete-time structure, which

allows te-eapture capturing non-Markovian dynamics [24].
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The SEAIRHD model

In this classical compartment model, hosts can belong to seven states: susceptible to infection (.5),
exposed (i.e. infected but not infectious, F), asymptomatic and infectious (A), infectious and symp-
tomatic (/), removed (i.e. recovered or isolated, R), hospitalised who will die (H), or dead (D) (Fig. ??).

The model is described by a set of ODE detailed in the appendix—In-the simulations,—we-assume
that-one-exposed-individual starts-the-epidemie-Appendix (equation system ??). Since the model is
deterministic, we can seed the simulations with a single exposed individual on day ¢.

This model is solved numerically usmg the Numpy package on-in Python 3.8.3 to obtain a deter-

ministic trajectorywi

Parameters were chosen with maximal likelihood given the observed daily mortality data, assumin
that the daily mortality incidence is Poisson distributed, and independence between daily incidences

For more details, see the supplementary material). We also simulate a stochastic version of this model
1,000 times using a Gillespie algorithm with the package TiPS [7] in R v.3.6.3 [23].

COVIDSIM: A non-Markovian deterministic model

We-estimate dates-of origin-and-end-of epidemiesusing Finally, we use an existing discrete-time model

that has a similar structure to the continuous model mentioned above with an additional age-structure
[24]. Fheserial-intervalis-For comparison purposes, the generation time is set to be the same as in
our DS model [20], and so is-theuse-of the (non-exponential delays-delay) from infection to death.
However, two major differences are that this earlier-third model is not stochastic and does not allow
for superspreading events. We restricted the parameter inference to the daily death-hospital mortality
data described previously, with the main free parameter being the date of origin. We invite the reader
to refer to [24] for the scripts and further details on this approach.

2.5 Model calibration

To allow for model comparison and improve estimates, we fixed-fix some key parameters based on
existing values, focusing on the French COVID-19 epidemic. Table ?? lists all the parameters used
along with key references.

The-We compute the likelihood of the deterministic SEAIRHD model was-computed-assuming a
Poisson distribution of the daily mortality incidence data. Parameter inference with maximum like-
lihood was-is performed using the Powell-INelder-Mead algorithm implemented by Scipy.minimize
function in Python.

The parameters used for the non-Markovian deterministic model correspond to the maximum
likelihood set of parameters used in [24].



22s 2.6 Code and simulation results availability

220 The different scripts and simulation results are available on Gitlab:

230 https://gitlab.in2p3.fr/ete/origin-end-covid-19-epidemics

2 3  Results

22 3.1 Origin of the epidemic wave

233 When neglecting host heterogeneity, using our DS algerithmframework, the median delay between the
23 importation of the first case of the epidemic wave and the time mortality incidence reaches 100 deaths
235 per day (March 23) is 67 days (equivalent to a first case on January 16 in France), with a 95% confidence
23 interval (95% CI) between 62 and 79 days, i.e. between January 4 and 21 in France (Fig. 1). With this
257 model, only 7% of the outbreaks die out before reaching the threshold.

238 Superspreading events, i.e. when the individual feree-of-infeetion-%—infectiousness #Z follows a
2se Gamma distribution, seem to have limited effects on these results: the median delay drops slightly to
220 64 days (January 19 in France), although with a larger 95% CI, between 54 and 85 days. Moreover, as
a1 expected [17], we observe a soar in the frequency of epidemic outbreaks dying out before reaching the
242 threshold, which represent 75% of our simulations.

243 When assuming a-deterministie Markovian-deterministic and Markovian dynamics with our SEAIRHD
a4 model, the date-of impeortation-importation date of the first case of the epidemic wave that best fits the

245 results is slightly-laterthan-the DS-medels-estimatessimilar, with a delay of 63 days until daily mor-

26 tality incidence reaches 100 deathscases. A stochastic implementation of the same model yields the

247 same median delay of 63 days ;and-a-[95% confidence-interval-between Cl: 56 and—- 76 days], which

248 is comparable to the DS model. However, consistently with earlier studies [24, 11], the ability of this

240 memoryless model to capture the data is limited (Fig. ?? in the Appendix). Finally, the maximum likeli-

250 hood parameter estimates from a deterministic but non-Markovian model, COVIDSIM [24], restricted

251 to the mortality data, indicates a similar delay of 63 days (January 20), with-a-[95%Clbetween: 63 and

22 - 64 days].


https://gitlab.in2p3.fr/ete/origin-end-covid-19-epidemics

253

254

255

257

258

259

260

261

262

263

264

266

Stochastic |
SEAIRHD
[
§®)
o
S
o
= DS without
0 e
@ heterogeneity
c
o
e
)]
DS with | I 1
superspreaders o
50 70 90
2020-02-02 2020-01-13 2019-12-24
Time to 100 deaths (days)
Start of the epidemic

Figure 1 - E

deaths: Estimated distribution of the number of days until daily mortality incidence reaches 100
cases. The boxplots and the whiskers indicate the 2.5%, 25%, 50%, 75%, and 97.5% quantiles out of the

10,000 simulations. The red dashed line shows the estimates using the deterministic models.

We perform a sensitivity analysis of our results focusing on two ef-eur-parameters. First, we show
that the median delay for daily ineidence-mortality to reach 100 deaths-is-clecreased-cases is increased
by 5 days when the serialinterval generation time standard deviation is decreased by one third (Fig. ??).
Those estimates-therefore Therefore, the estimates remain within the confidence interval of ourstarting
clate-obtained for the starting date of the epidemic. Second, increasing the number of initially imported
cases from 1 to 5 decreases the delay by 8-days7 days, with a median of 60 days [95% CI: 57-64 days]
without heterogeneity. However, when assuming a more realistic scenario where all those cases are not
imported on the same day, we find-amuch-more limited-impact-on-the-delay-this impact of the delay
was more limited (Fig. ??). For example, if the 5 cases are imported during the first five days of the
outbreak, the decrease is only of 5 days, with a median delay of 62 days [95% CI: 59 - 66 days].

Overall, non-Markovian dynamics or stochasticity do not tend to significantly-strongly impact the
estimate of the delay for an epidemic to reach a daily mortality incidence of 100 deathscases. Introduc-
ing super-spreading events, however, slightly decreases the delay estimated and greatly increases its

variance. As expected, the initial number of imported cases can have an impact on the estimates.

10
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3.2 End of the epidemic wave with leck-dewnlockdown
Time to eradication

We estimated-estimate the distribution of the minimal leek-dewn-Jockdown duration to eradicate the

epidemic (1) —We-first negleet-by first neglecting superspreading events and start-starting from the
end of the first-wave loek-down-lockdown in France on May 11 (orange violins in Figure 2). When
maintaining the constraints on social interactions to their full intensity (¢=55="01:>55 = 0.24), a total
of at least 7:6-months-oflock-down8 months of lockdown, including the 55 days between Mar 17 and
May 11, are required to reach a 9597.5% extinction probability.

When accounting for individuals heterogeneity, we find that, everything else being equal, the quan-

tiles of the time to eradication (7) are always lower than in-hemogeneous-easethe homogeneous cases.

However, 6:9-months-oflock-down7.23 months of lockdown at full intensity (§=s5— = (0.24) are
still required to guarantee 95% chanee-of extinetion-extinction in 97.5% of the cases (blue violins in Fig-

ure 2). Here,taking into-account-the- individual-heterogeneity-Accounting for individual heterogeneit
also reduces the variance of 7. Indeed;transmission-heterogeneity-implies-that This is expected because

in this case, the majority of the infected people do not transmit, which increases the extinction proba-
bility [17].
The mean values of the time to eradication (7) increases with the decrease in the intensity of the

Mﬁmmﬂ%%ﬁ%ﬂmd&ﬁ%lockdown constraints post 55 first days

of lockdown. As the contact rate of the population tends towards 1/R, the mean values of 7 diverge
towards infinity. The dynamical process is said to be critical (resp. super-critical) if Wqﬁwzwl@

(resp. ﬁf%TaMwﬂ) This result holds trte-when assuming transmission heterogeneity.

We also compute the time to extinction with the deterministic SEAIRHD model after tuning the
model using the parameters that best fitted the mortality incidence (Fig. 2). The time to extinction
corresponds here to the minimum time where the incidence reaches zero.

Rebound risk

In our stochastic model,

a%ter—bemgmfeeﬁeﬁs—?hefef—efevthe incidence at time ¢ (\CIAQQQIQQL(}Q)EN) can alternate between zero

and non-zero values. To evaluate the risk of epidemic rebound, we implement a finite loek-down

lockdown extension after which all constraints are released (7 =+t<-¢—=-1n, = 1). This allows us to
calculate py(t), the probability to have 0 new cases after time ¢. In Figure ??, we see a sharp decrease in
po(t) a few days after loek-downlockdown release.

The rebound risk is directly linked to the faﬂdem—v&ﬂab}e{—FWche%efeeﬂ{—mfeeHeﬁef—an—mdﬂﬂd&al

z-infeeted-y-days-after-the start-of the simulation)—Assuming-transmission heterogeneity. Assumin
higher individual transmission heterogeneity (i.e. lower k) drastically reduces the risk of rebound, as it

also implies that most infectees do not transmit the disease.

11



302

303

304

305

306

307

308

309

310

311

312

313

— —] 1
o 027 .
= e
£ -
S 0.257 IS
§ —<l—:>
=}
S — 1 ——
S 0.243 TS
| <=
200 400
2020-10-03 2021-04-21
Time to extinction (days)
Corresponding date
SEAIRHD estim. @ superspreaders |:| FALSE TRUE

Figure 2 — E . y, a ; ading ev
to-extinetion{+): Effect of lockdown intensity, stochasticity, and superspreading events on the time
to extinction (7). The distributions of +the time to extinction (number-of-in days since the start of
the loek-down-lockdown on Mar-March 17) for several loek-down-lockdown intensities inerease(;)
after the first 55 days (i.e. after May-11 May 2020) are plotted on the Y-axis {¢;)-using violin plots and
boxplots. Results without transmission heterogeneity (:=-5{Fy)% = J(Rp)) are in orange. In blue, we
assume a Gamma distribution for :2%. Red diamonds show results from the deterministic Markovian

model. The box extends from the lower to upper quartiles of the data. The whiskers expand from the
2.5% to the 97.5% quantiles.

Eradication and leck-dewn-lockdown initiation date

We now turn to the consequence of implementing a leek-downlockdown a month or two weeks earlier.
In France, this corresponds to Feb 17 and Mar 03 (at that time, a total of respectively 1 and 3 deaths were
reported).

The results are shown in Figures2?-Figure ?? for the case without host heterogeneity and Fig. 22
3 with superspreading events. Initiating the lock-down-lockdown one month earlier, i.e. for France
approximately 33 days after the onset of the epidemic wave, decreases the 9597.5% quantile of by
96-days-witheut-the time to extinction by 91 days with transmission heterogeneity (92-days-with-97
days without heterogeneity) in the most restrictive scenario. If the onset of the loek-dewnlockdown is
brought forward by two weeks (Mar-63March 3"), i.e. in France approximately 48 days after the onset
of the epidemic, 9597.5% of the extinction events occur before the 188" days-of lock-downwithout 1781
day of lockdown with transmission heterogeneity (169"-days-with-199" day without heterogeneity).

12
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Figure 3 - Effect of the lockdown intensity, stochasticity, and initiation date on the time to extinction
(7). under individual spreading heterogeneity assumption. The distributions of the time to extinction
(in_days since the start of the lockdown) for several contact rate restrictions post 55 first days are
plotted on the Y-axis using violin plots and boxplots. In this graph, we assume individual spreading
heterogeneity. The colors indicate the different initiation date of the lockdown: in purple it starts on
Feb 17, green Mar 03, and yellow on Mar 17 (official start). The box extends from the lower to upper
quartiles of the data. The whiskers expand from the 2.5% to the 97.5% quantiles.

Hence a reduction of 41-39 (resp. 3842) days of leek-down-lockdown could be expected compared to
the later-actual start (Mar 17).

These numbers increase with the easing of the constraints following the first 55 days of strict loek-down
{nrrlockdown (1, = 0.24). When assuming a lighter control in the following days (e.g.¢=55="6-6% 1455 = 0.29),

one can notice that the increase in the quantiles of 7 when starting the loek-dewn-lockdown on Feb 17

is much lower than the two other cases. Since-the-epidemic-hasnotspread-to-sameextentin-the latter

scenario,

Time to a threshold of 20 new cases per da

Finally, we study the distribution of the delay to reach 20 new cases per day, below which it is expected
that a general lockdown is not required to control the epidemic. We evaluate the effect of lockdown
intensity, initiation date and individual spreading heterogeneity on this delay.

The estimated distributions of the time to 20 new daily cases when accounting for superspreadin
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Figure 4 —E
{ﬂw&hﬁu’c—s&pefspfeadmgeveﬂfsr Effect of the lockdown intensity, stochasticity, and initiation date

on the time to 20 new cases under individual spreading heterogeneity assumption. The distributions
of #the time to 20 new cases (number-ofin days since the start of the lock-down-on-Mar-17lockdown)
for several lock-down-intensities-inerease-after-thefirst-contact rate restrictions post 55 first days are
plotted on the Y-axis {¢:)-using violin plots and boxplots. In this graph we assume thereisne-individual

spreading heterogeneity. The colors indicate the different initiation date of the loek-downlockdown: in
purple it starts on Feb 17, green Mar 03 and yellow on Mar 17 (official start). The box extends from the
lower to upper quartiles of the data. The whiskers expand from the 2.5% to the 97.5% quantiles.

events is displayed in Figure 4 (see Figure ?? for the estimations without superspreaders). Our model
suggests that initiating control measures one month earlier (mid-February) would have reduced the
97.5% quantile of the time to 20 new cases by 95 days under the strictest restrictions. In the mid-February
scenario, we notice the time to 20 new cases occurs during the 55 first days of lockdown. Starting the
lockdown early March does reduce the 97.5% quantile of the time to the threshold by 40 days. However,
the first 55 days of leck-down-are decisive inthe slow-down-of the epidemielockdown are not sufficient
to reach the limit of 20 new cases per day.

4 Discussion

In the early and final stages of an epidemic, stochastic forces may strongly affect transmission dynamics

because infection prevalence is low. Using stochastic mathematical modelling, and assuming Ry = 3,
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s we estimate the time for a COVID-19 epidemic to reach an incidence of 100 deaths per day to be ap-
ss7  proximately 67 days, with a 95% probability between 62 and 79 days. In the case of France, where such
sss  incidence values were reached on Mar 23, this translates into an origin of the first-epidemic around
s  January 16, with 95% probability between January 4 and 21. This is consistent with estimates obtained
a0 using virus genome data, although these should be interpreted with caution due to the uncertainties
a1 regarding the molecular clock estimates for the virus and the incomplete sampling in France [6].

342 Accounting for superspreading events does-yield-yields a later median date of origin (January 19 for
a3 France). This {Lasife%dyﬂamtc—eeme&&eﬁorﬂ&eﬂfae%tha%ﬁmﬂ}a%eér mwoutbreaks that

s44 donot die outfa

345 wvhlelﬂreaiﬂead%eﬂ%as%e%m&ra%dyiﬁmie superspreading events accelerate the initial dynamics [17].

us However, this difference is not significant.

347 In-general,the The 95% confidence-intervals-Cl for the epidemic starting date generated by our
us different models overlap. This could originate from our use of mortality data. Since death occurs after

ue  a mean delay of 23 days after infection [24], by the time incidence starts-to-inereasemortality incidence

so is detectable, transmission dynamics are largely deterministic. This also explains why introducing

st superspreading events mostly increases-the-origin-date-uncertaintyaffects the variance of the estimate.

sz Unfortunately, hospital admission date-data is not available for France until Mar-18 March 2020, and

33 screening data was initially performed with a very low sampling rate in the country (only severe cases

3sa  were tested).

355 Care must be taken when comparing the estimates from our discrete stochastic model to that of
ss6  earlier models. For instance, the non-Markovian deterministic medel-by-Sefenea—et-al. COVIDSIM
ss7  model [24], which estimates the date of onset to be slightly later (January 20), includes host age struc-
sss  ture. Regarding the more classical deterministic and Markovian SEAIRHD model, its ability to fit the
sse  data is limited (Fig. ??), except when only considering the exponential phase before the lockdown. This
s0 poor inference of underlying epidemiological dynamics is largely-likely due to the absence of memory
st in the underlying processes, as stressed by earlier studies [24, 11]. When incorporating memory on

2 the hospitalizationto-death-hospitalization-to-death delay, we obtain a much better fit, and the time

ss  to 100-daily-deaths-the daily mortality of 100 cases is then comparable to that of the model without
s« superspreading events.

365 We also estimated-the mean-estimate the median number of days of full intensity leek-dewnlockdown
a6 required to achieve extinction with a 95% confidence. With-our-stochastie- modelln the French settin

s7  (i.e. introduction of the lockdown after 67 days of the epidemic), we find thatin-average 190-(1C
ss  with our stochastic model that 187 (95% —183-199CI: [161, 241]) days of lock-down-are necessary
s lockdown would be required to reach extinction in a homogeneous seenario;starting-the loek-down

a0 mid-Marehtransmission scenario in 50% of the cases. Accounting for superspreading events decreases
a7t the median estimate value by 20 days. Initiating the loek-down-lockdown one month earlier strongly

a2 affects these estimates: a 30 days anticipated start reduces the mean number of days spent in full inten-
a3 sity leek-downby-961lockdown by 95 days, i.e. a 4951% reduction.

a74 50% of the simulations reach the threshold of 20 new cases after 108 (95% CI: [98, 122]) days of
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lockdown at full intensity initiated mid-March. When initiating the constraint in mid-February, this
threshold is reached in 13 (95% CI: [4, 27]) days. Since, in the latter scenario, the epidemic spread is

more limited, the first 55 days of lockdown are decisive in the slowing down of the epidemic. This
confirms that early interventions have a disproportionate impact on the epidemic dynamic.

Finally, we investigated the risk of an epidemic rebound upon leck-dewnlockdown lifting. In this
scenario, super-spreading has a striking impact as-expeeted-in limiting this risk, which is consistent

with earlier work on outbreak emergence [17].
There are several limitations to this work. First, the serial-interval-generation time w and the time

from infection to death 0, are remain largely unknown in France, as well as in many countries. Most
of-the knewn-serial interval estimates rely on contact tracing data from Asia [16, 19], which could be
shightly-different differ from the distribution in France, due to different-differences in contact structure,
or ehf—fereﬂ’ﬁnon—pharmaceutlcal

interventions. Although the generation time
dlstrlbutlon is expected to affect epidemic dynamics, we show in Figure ?? that the variance of this
interval deesnothaveastrongimpaeton-thehas little impact on our results.

Another important limitation about the estimation of the date of origin of the epidemic comes from
the assumption that only ene-initial-a single infected person caused the epidemic. Clearly, most-Most
epidemics outside China were seeded by multiple importation events. The problem is that there is an
identifiability issue because it is impossible to estimate both the number of initial infected cases and
the time to a threshold of 100 deaths with incidence data only. However, some estimates made in the
UK from phylogenetic data as well as the combination of prevalence and travel data show that the
estimated number of importation events is less than 5 per day before the end of February, when the
virus was beginning to circulate at higher levels throughout Europe [22]. Assuming that-the-dynamie
was-similar-a_similar importation pattern in France, we eould-—verify-show that the dynamic was-is
only sensitive to the importation events within the first days after the beginning of the epidemic wave.
While these events may have enabled-helped the epidemic to escape the stochastic phase faster, they
would-net-have strongly-affeeted-are unlikely to strongly affect the estimated date of the beginning of
the wave (Figure ??). In a quite extreme scenario of 5 importations per day during 30 days, we estimate
the median day of the epidemic beginning was-estimatee-to be 16 days later (i.e. Feb 2 for France).

Another limitation comes from the lack of data regarding individual heterogeneity in COVID-19
epidemics. Such heterogeneity was supported by early limited data [10, 16] but recent additional ev-
idence from Chinese transmission chains further supports this result [25], although with a higher %k
parameter value that-than the one used here (0.30 versus 0.16 here), meaning a less heterogeneous

transmission. Therefore, our assessment of superspreading events impact seems conservative.

These results have several implications. First, they can help reconcile the fact that cases may be
detected long before the emergence of the transmission chains related to an epidemic wave. This is

particularly important for an audience not familiar with stochasticity. Second, the estimate of the time

required to ensure that the epidemic is gone is-direetly-informative to-public-health-offieialscan help
inform public health decisions. In the case of France-the French epidemic, for instance, ene-can-direetly
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see-that-enforcing a strict loek-down-lockdown from March 17 until epidemic extinction is-was prac-
tically unfeasible. This-However, this may not be the case if measures are taken early enough in the
epidemic. Furthermore, our work also illustrates the risk of epidemic rebound as a function of the du-
ration of the leek-downlockdown. Overall, this work calls for further studies, especially to assess the
importance of super-spreading events in the global spread of SARS-CoV-2.
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