
An Efficient Algorithm for Estimating Population History from

Genetic Data

Alan R. Rogers

May 3, 2021

Abstract

Legofit is a statistical package that
::::
The

::::::
Legofit

:::::::::
statistical

::::::::
package uses genetic data to esti-

mate the history of population size, subdivision, and admixture
::::::::::
parameters

:::::::::
describing

::::::::::
population

::::::
history.

:::::::::
Previous

:::::::
versions

:::::
used

::::::::
computer

:::::::::::
simulations

::
to

::::::::
estimate

::::::::::::
probabilities,

::
an

:::::::::
approach

::::
that

::::::
limited

:::::
both

::::::
speed

::::
and

::::::::
accuracy. This article describes a new deterministic algorithm, which

makes Legofit orders of magnitude faster and more accurate.
::::
The

:::::
speed

::
of

::::
this

:::::::::
algorithm

:::::::
declines

::
as

::::::
model

::::::::::
complexity

::::::::
increases.

::::::
With

::::
very

::::::::
complex

:::::::
models,

:::
the

::::::::::::
deterministic

:::::::::
algorithm

::
is

::::::
slower

::::
than

:::
the

:::::::::
stochastic

:::::
one.

::
In

:::
an

::::::::::
application

:::
to

::::::::
simulated

:::::
data

::::
sets,

::::
the

::::::::
estimates

:::::::::
produced

:::
by

:::
the

:::::::::::
deterministic

::::
and

::::::::::
stochastic

::::::::::
algorithms

::::
were

::::::::::
essentially

::::::::
identical.

:::::::::::
Reanalysis

::
of

::
a

::::::
human

:::::
data

::
set

::::::::::
replicated

:::
the

:::::::
findings

::
of

::
a
::::::::
previous

:::::
study

::::
and

::::::::
provided

::::::::
increased

::::::::
support

:::
for

:::
the

::::::::::
hypotheses

::::
that

:::
(a)

:::::
early

::::::::
modern

:::::::
humans

:::::::::::
contributed

::::::
genes

:::
to

:::::::::::::
Neanderthals,

::::
and

:::
(b)

::
a
::::::::::::::
“superarchaic”

:::::::::
population

:::::::
(which

:::::::::
separated

::::
from

:::
all

:::::
other

::::::::
humans

:::::
early

::
in

:::
the

:::::::::::
Pleistocene)

::::
was

::::::
either

:::::
large

::
or

::::::
deeply

::::::::::
subdivided.

:

1 Introduction

Legofit [20–22] estimates parameters
::::::
Legofit

:::
is

::
a

:::::::::::::::::
publicly-available

:::::::::::
statistical

::::::::
package

:::::
that

:::::
uses

:::::::
genetic

:::::
data

::
to

:::::::::
estimate

::::
the

:::::::
history

::
of

:::::
size,

::::::::::::
subdivision,

::::
and

:::::
gene

::::
flow

:::::::
within

::
a

:::
set

:::
of

::::::::::::
populations.1

::::::::
Because

::
it

::::::::
ignores

::::
the

::::::::::::::::::
within-population

:::::::::::
component

:::
of

::::::::
genetic

::::::::::
variation,

:::
it

:::::::
avoids

::::
the

:::::
need

:::
to

::::::::
estimate

::::::::::::
parameters

::::::::::
describing

:::::::
recent

:::::::::::
population

::::::::
history

::::
and

:::
is

::::
able

:::
to

::::::
focus

:::
on

:::
a

:::::::
deeper

:::::
time

:::::
scale.

:::
It

::::::::
operates

:
by fitting models of history to the frequencies of “nucleotide site patterns,” which

describe the sharing of derived alleles by subsets of populations. The estimation process searches for
a set of parameter values that maximize the

::
In

:::::::
recent

:::::::::::::
publications,

::
it

:::
has

:::::::
shown

:::::
that

:::::::::::::
Neanderthals

::::
and

:::::::::::
Denisovans

:::::::::
separated

:::::::
earlier

:::::
than

::::::::::
previously

:::::::::
thought,

::::
that

:::::
their

::::::::::
ancestors

::::::::
endured

:
a
:::::::::::
bottleneck

::
in

:::::::::::
population

::::
size,

::::
and

:::::
that

::::::
these

:::::::::
ancestors

:::::::::
interbred

:::::
with

::
a

:::::::::::
preexisting

::::::::::::::
“superarchaic”

::::::::::::
population,

::::::
which

::::
had

:::::::::
inhabited

::::::::
Eurasia

:::::
since

::::::
early

::
in

::::
the

:::::::::::
Pleistocene.

:::
It

::::
has

::::
also

::::::::::
confirmed

::
a

:::::::
variety

::
of

:::::::
results

::::
first

:::::::::
obtained

:::
by

::::::
other

::::::::
methods

::::::::
[20–22].

:

::::::::
Legofit’s

:::::::::::
estimation

:::::::::::
procedure

::::::::::
evaluates

::::
the fit of model to data . This involves evaluating

::
at

:
many sets of values, and in

::::::::::
parameter

:::::::
values.

:::
In

:
previous versions of Legofit, each evaluation

required a lengthy computer simulation. These calculations were feasible , because they could be
done in parallel. Nonetheless, Legofit was practical only

::::
most

::::::
useful

:
on high-performance computing

clusters.
::::
This

::::::::::
stochastic

::::::::::
algorithm

::::
also

::::::::
limited

:::
the

:::::::::
accuracy

:::::
with

:::::
with

:::::::
models

::::::
could

:::
be

:::
fit

::
to

::::::
data.

This article describes a new deterministic algorithm, which provides an enormous increase in

::::::::
increases

::::::
both

:
speed and accuracy. With the simulated data discussed below, the deterministic

1https://github.com/alanrogers/legofit

1

X Y N D
yn: 0 1 1 0

ynd: 0 1 1 1

...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.............
.............
..........

...............
...............
...............
...............
...............
...

...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
...............
...............
...............
...............
........

.............
.............
.............
.............
.............
.............
.............
.............
................
...............
...............
......

.............
.............
.............
.............
.............
.............
.............
.............
.......

.............
.............
.............
.............
.............
.............
.............
.............
.......

.............
.............
.............
.............
.............
.............
.............
.............
................
...............
...............
...............
...............
...................
...................

...................
...................

...................
...................

...................
..............
.............
.............
.....

..

..
...

α

ε.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
............
.
..........
...
.

.............
.............

.............
............
............
.

...........
..
...........
..
...........
..
............
...........
...........
...........
...........
.............
.............
.............
..............
.............
.............
..........

...........
..
...........
..
...........
..
...........
..
...........
..
...........
...

............
.............

.............
................

...............
...............

...............
...............
.......

Figure 1: Population network with embedded gene tree. A mutation on the solid red branch would
generate site pattern yn (shown in red at the base of the tree). One on the solid blue branch would
generate ynd. “0” and “1” represent the ancestral and derived alleles. Key: X, Africa; Y , Eurasia;
N , Neanderthal; D, Denisovan. After Rogers [20, Fig. 1].

algorithm is over 1600 times as fast as the stochastic one. And because
:::::::
Because

:
of its greater

accuracy, it also provides a better fit of model to data
::::
and

:::::::::
improves

::::::::
Legofit’s

:::::::
ability

:::
to

::::::::::::
discriminate

::::::
among

::::::::
models.

2 Methods

The new algorithm involves two novel components. The first of these involves a well-known Markov
chain [8, 23, 26] that is seldom used because of the numerical difficulties. Below, section 2.3
shows a way around these difficulties. The new algorithm also relies on two results describing
how descendants are partitioned among ancestors. One of these (Eqn. 7) is old and the other
(Eqn. 8) new. Before discussing these, however, let us review the basics of Legofit. As in previous
publications, I use capitalization to distinguish the Legofit package from the legofit program within
that package.

2.1 Model of population history

Fig. 1 shows a gene tree embedded within a network of populations. In Legofit, the population
network is modelled

::::::::
modeled

:
as a set of connected segments, each with a simple history. Each

segment describes a single randomly-mating population, during an interval of constant population
size. The root segment has no parent, and tip segments have no children. All other segments have
at least one parent and one child. Segments that receive gene flow have two parents: one for native
ancestors and the other for immigrants. Most segments have finite length, but the root segment is
infinite.

::::
The

:::::::::::
population

::::::::
history

:::
in

::::
Fig.

::
1
::::::

could
:::

be
:::::::::

modeled
::::::

using
::::
the

:::::::::
network

::
of

::::::::::
segments

:::
in

::::
Fig.

:::
2.

:::::
Note

::::
that

::::
the

::::::::
branch

:::::::
ending

::
at

:::
Y

:::
in

:::::
Fig.

::
1
::::
has

::::::
three

:::::::::
segments

:::
(y,

::::
y1,

:::::
and

:::
y2)

:::
in

:::::
Fig.

::
2.

::::::
This

::
is

2

x y

y1

y2

n

n2

d0

d

ndxy

xynd

Figure 2:
::::::::
Network

:::
of

:::::::::
segments

::::::
used

::
in

:::::::
legofit

:::::::::
analysis.

:::::::::
Squares

::::::::::
represent

:::::::::
segments

::::::
from

::::::
which

::
we

::::::
have

:::::::::::
“observed”

::::
(i.e.

:::::::::::
simulated)

::::::
data.

::::::::
Arrows

::::::::
indicate

::::::::::::::::::::
ancestor-descendant

::::::::::::::
relationships,

::::
and

:::::::
dashed

:::::
lines

:::::::::
represent

:::::
gene

:::::
flow.

::::::::::
Segments

:::
in

:::
the

::::::
same

::::
row

:::::
need

::::
not

:::
be

::::::::::::::
contemporary.

:::::::
because

:::::
that

::::::::
branch

::
is

:::::::::::
interrupted

:::
by

:::::
two

::::::::
episodes

:::
of

:::::
gene

:::::
flow,

:::::
and

:::::
gene

::::
flow

::::
can

::::::
occur

:::::
only

:::
at

:::
the

::::::::
ancient

::::
end

::
of

::
a

:::::::::
segment.

::::::
Thus,

::::::::
segment

::
y
::::::::
extends

:::::
from

::::
the

:::::::
present

:::::
back

:::
to

::::
the

::::
first

::::::::
episode

::
of

::::
gene

:::::
flow,

:::
y1

::::::::
extends

:::::
from

::::
the

:::::
first

:::::::
episode

:::
to

::::
the

:::::::
second,

:::::
and

::
y2

::::::::
extends

::::::
from

:::
the

:::::::
second

::::::::
episode

::::
back

:::
to

::::
the

::::::::::
separation

:::
of

::::::::::::
populations

:::
X

::::
and

:::
Y .

:

::::
The

::::
size

:::
of

:::::::::::
population

::
Y

:::::::
cannot

:::
be

::::::::::
estimated,

::::::::
because

::::::
there

::
is

::::::
never

:::::
more

:::::
than

::
a

::::::
single

:::::::
lineage

::::::
within

:::
Y .

::::
At

:::::
time

:::::
zero,

::::::
there

::
is

::
a

::::::
single

:::::::
haploid

::::::::
sample,

:::::::::
because

::
Y

::
is

::
a
:::::::::::
population

:::::
that

::::
has

:::::
been

::::::::
sampled.

::::::
This

::::::::
lineage

:::::
may

::::::
derive

::::::
from

::::::::
segment

::::
d0,

:::::
from

::::
n2,

:::
or

::::::
from

:::
y2.

::::::
But

:::::
there

:::
is

:::
no

:::::
way,

:::::
under

:::::
this

:::::::
model

::
of

::::::::
history,

::::
for

::::
any

:::
of

::::
the

:::::::::
segments

:::::
that

:::::::::
compose

:::
Y

:::
to

::::::::
contain

:::::
more

::::::
than

::::
one

:::::::
lineage.

::::::::::::::
Consequently,

:::
no

:::::::::::
coalescent

::::::
events

::::
are

::::::::
possible

:::::::
within

:::
Y ,

::::
and

:::
its

:::::::::::
population

::::
size

:::::
does

::::
not

:::::
affect

::::
site

::::::::
pattern

::::::::::::
frequencies.

:::::
This

:::::::::::
population

::::
size

:::
is

:::::::::
therefore

::::::::
treated

::
as

::
a
:::::
fixed

:::::::::
constant

:::::::
rather

::::
than

::
a
:::::::::::
parameter

::
to

:::
be

:::::::::::
estimated.

:

:::
On

::::
the

::::::
other

::::::
hand,

:::::::::
segment

:::
n2

:::::
may

::::::::
contain

::::::
either

::
1
:::
or

::
2
:::::::::
lineages.

:::
It

::::
will

:::::::
always

::::::::
contain

:::
at

::::
least

::
1
::::::::
lineage,

::::::
which

::
is
::::::::::
ancestral

::
to

::::
the

:::::::
lineage

:::::::::
sampled

::
in

:::::::::
segment

::
n.

:::
In

:::::::::
addition,

:::
it

::::
may

::::::::
contain

:::
the

::::::::
lineage

::::::::
sampled

:::
in

:::::::::
segment

::
y.

:::::::::::::::
Consequently,

:::::::::::
population

:::::
size

::
in

:::::::::
segment

:::
n2

:::
is

:::
an

::::::::::
estimable

::::::::::
parameter.

:

::
In

::::::
order

:::
to

:::::::
reduce

::::
the

::::::::::
parameter

:::::::
count,

::
it

::
is
:::::::::

possible
:::
to

:::::::
specify

:::::
that

:::::::
several

:::::::::
segments

::::::
share

::
a

:::::
single

::::::::::::::::
population-size

:::::::::::
parameter.

:

2.2 Nucleotide site patterns

Legofit works with the frequencies of nucleotide site patterns, which are illustrated in Fig. 1. A
nucleotide site exhibits the yn site pattern if random nucleotides drawn from populations Y and
N carry the derived allele, but those drawn from other populations carry the ancestral allele.
Fig. 1 shows the gene genealogy of a particular nucleotide site, embedded within the network of
populations. A mutation on the red branch would generate site pattern yn, whereas one on the
blue branch would generate ynd. Mutations elsewhere would generate other site patterns. The
gene genealogy will vary from locus to locus, so averaging across the genome involves averaging
across gene genealogies. We are interested in the properties of such averages.

Let Bi represent the length in generations of the branch generating site pattern i. I employ the

3

“infinite sites” model of mutation [10], which assumes that the mutation rate is small enough that
we can ignore the possibility of multiple mutations on any given branch. Under this assumption, a
polymorphic site exhibits pattern i with probability

Pi =
E[Bi]∑
j∈ΩE[Bj]

(1)

where E[Bi] is the expected length of the branch generating site pattern i, and Ω is the set of
site patterns under study [20, Eqn. 1]. Previous versions of Legofit used coalescent simulations to
estimate these expectations. The sections that follow describe a deterministic algorithm.

2.3 The matrix coalescent

The new algorithm is based on a model that calculates the probability that there are k ancestral
lineages at the ancient end of a segment, given that there are n descendant lineages at the recent
end. This model also calculates the expected length of the interval

::::::
within

::::
the

:::::::::
segment

:
during

which there are k lineages, where 1 ≤ k ≤ n. The model employs a continuous-time Markov
chain[23, appendix I; 8; 26], which begins with n haploid lineages at the recent end of the segment.
As we trace the ancestry of this sample into the past, the original sample of n lineages falls to n−1,
then n− 2, and so on until only a single lineage is left, or we reach the end of the segment.

::::
The

:::::::::
number,

:::
n,

::
of

::::::::::::
descendants

:::::::
equals

::
1

:::
for

::::
tip

::::::::::
segments.

::::
For

:::::::::
ancestral

::::::::::
segments,

::
n
:::::
may

:::::
take

::::::
several

:::::::
values

::::::
with

:::::::::
different

:::::::::::::
probabilities.

::::::
The

:::::::
legofit

:::::::::
program

::::::
sums

::::::
across

::::::
these

:::::::::::::
possibilities,

:::::::::
weighting

:::
by

::::::::::::
probability.

:

This Markov chain is well known
:::::::::::::::::::::
[23, appendix I; 8; 26] but seldom used, because accurate

calculations are difficult with samples of even modest size. Legofit, however, is designed for use
with small samples. Furthermore, it is possible (as shown below) to factor the calculations into
two steps, one of which can be done in exact arithmetic , and only needs to be done once at the
beginning of the computer program. Numerical error arises only in the second step, and as we shall
see, that error is small.

Within a segment, the population has constant haploid size 2N , although 2N can vary among
segments.

:::::::::::
(“Haploid”

:::::::::::
population

::::
size

::
is

::::::
twice

:::
the

::::::::
number

:::
of

:::::::
diploid

:::::::::::::
individuals.)

:
It will be conve-

nient to measure time backwards from the recent end of each segment in units of 2N generations.
On this scale, time is v = t/2N , where t is time in generations. Let x(v) denote the column vector
whose ith entry, xi(v), is the probability of observing i lineages at time v, where 1 ≤ i ≤ n. I ignore
the absorbing state x1, so that indices of arrays and matrices range from 2 to n. Because there are n
lineages at time zero (the recent end of the segment), the initial vector equals x(0) = [0, . . . , 0, 1]T .
At time v [26, Eqn. 8],

x(v) = CE(v)Rx(0) (2)

Here, E(v) is a diagonal matrix of eigenvalues whose ith diagonal entry is e−βiv, where βi =
i(i− 1)/2. C = [cij] and R = [rij] are matrices of column eigenvectors and row eigenvectors, both
of which are upper triangular. They are calculated by setting diagonal entries equal to unity, and
then applying [26, p. 1642],

ci,j = ci+1,j ×
(

i(i+ 1)

i(i− 1)− j(j − 1)

)
, i = j − 1, . . . , 2

ri,j = ri,j−1 ×
(

j(j − 1)

j(j − 1)− i(i− 1)

)
, j = i+ 1, . . . , n

4

Let m(v) denote the vector whose kth entry, mk(v), is the expected duration (in units of 2N
generations) of the interval during which the segment contains k lineages, within a segment of
length v. This vector equals

m(v) = B−1(x(v)− x(0)) (3)

where

B =

−β2 β3

−β3
. . .
. . . βn

−βn

Eqn. 3 holds not only for finite segments, but also when v → ∞. In the infinite case, x(∞) = 0,
because we are considering only the transient states (x2, . . . , xn), which disappear in the long run.
Eqn. 3 is easy to calculate, because B−1 has a simple form. For the case of n = 4,

B−1 =

−1/β2 −1/β2 −1/β2

−1/β3 −1/β3

−1/β4

 .

This model presents challenging numerical issues. To deal with these, let us re-organize the
calculations to do as much as possible in exact arithmetic. I illustrate this re-organization using
the case of n = 3, for which Eqn. 2 becomes

x(v) =

(
1 −3/2
0 1

)(
e−β2v 0

0 e−β3v

)(
1 3/2
0 1

)(
0
1

)

=

(
1 −3/2
0 1

)(
e−β2v 0

0 e−β3v

)(
3/2
1

)

=

(
1 −3/2
0 1

)(
3/2 0
0 1

)(
e−β2v

e−β3v

)

=

(
3/2 −3/2
0 1

)(
e−β2v

e−β3v

)

= Gw(v) (4)

where w(v) = (e−β2v, e−β3v)T is a vector of eigenvalues, G = Cdiag(Rx) is a matrix of column
eigenvectors with columns scaled by the entries of vector Rx(0), and diag(Rx(0)) is a diagonal
matrix whose main diagonal equals the vector Rx(0). The matrix G can be calculated in exact
rational arithmetic. This is done at the beginning of the computer program for each possible value
of n, and the resulting values are stored for later use.

Next, substitute (4) into (3) to obtain

m(v) = z + Hw(v) (5)

where z = −B−1x(0) = (1/β2, . . . , 1/βn)T , and H = B−1G, both of which can be calculated in
advance for each possible value of n, using exact arithmetic. For example, if n = 3,

m(v) =

(
1

1/3

)
+

(
−3/2 1/2

0 −1/3

)(
e−β2v

e−β3v

)

In an infinite segment, Eqn. 5 is simply m(∞) = z.

5

This algorithm calculates xk(v) and mk(v) only for k = 2, 3, . . . , n. Values for k = 1 are obtained
by subtraction: x1(v) = 1−∑n

k=2 xk(v), and m1(v) = v−∑n
k=2mk(v). Finally, to re-express mk(v)

in units of generations, define
Lk(t, 2N) = 2Nmk(t/2N) (6)

where t is the length of the current segment in generations, and 2N is its haploid population size.
Lk(t, 2N) is the expected duration in generations of the interval during which the current segment
contains k lineages.

Several of the quantities in this algorithm—G, H, and z—are calculated in exact rational
arithmetic. Although there is no roundoff error, these calculations will overflow if n is too large.
With 32-bit signed integers, there is no overflow until n > 35. This is more than enough for Legofit,
which requires that n ≤ 32, so that site patterns can be represented by the bits of a 32-bit integer.

Roundoff error does occur in this algorithm, because all quantities are eventually converted to
double-precision floating point during the calculation of Eqns. 4 and 5. To assess the magnitude
of this error, I compared results to calculations done in 256-bit floating-point arithmetic, using the
Gnu MPFR library [7]. I considered values of v ranging from 0 to 9.5 in steps of 0.5, and also
v → ∞. The maximum absolute error is 3.553 × 10−15 when n = 8; 2.700 × 10−13 when n = 16;
and 1.543× 10−8 when n = 32. These errors are all much smaller than those of Legofit’s stochastic
algorithm.

::::
The

:::::::
theory

::::
just

::::::::::
described

::::::
allows

:::
us

:::
to

:::::::::
calculate

::::
the

:::::::::::
probability

:::::
that

::
n

::::::::::::
descendants

:::::
have

::::::
k ≤ n

:::::::::
ancestors

::
in

::::::
some

::::::::
previous

::::::::::::
generation.

:::
To

::::::
relate

:::::
this

::::::
theory

:::
to

::::
the

:::::::::::
frequencies

::
of

:::::
site

:::::::::
patterns,

:::
we

:::::
must

:::::::
discuss

:::::
how

:::
the

:::::::::::
coalescent

:::::::
process

::::::::::
partitions

::::::::::::
descendants

:::::::
among

:::::::::::
ancestors.

:

2.4 Partitioning samples
::::::::::::::
descendants

:
among ancestors

A “segment” is an interval within the history of one subpopulation. Let n represent the number
of descendant lineages at the recent end of the segment, and let k ≤ n represent the number of
ancestral lineages at some earlier point within the segment. The theory in section 2.3 calculates
the probability of k given n, v, and 2N . It

::
at

::::
any

:::::
time

:::::::
within

::::
the

:::::::::
segment

::::
and

:
also provides the

expected length of the interval during which there are
:::::::::::
subinterval

:::::::::::
containing k lines of descent.

For all segments except the root, we need both of these quantities. We need the expected lengths
of subintervals, because these lengths measure the opportunity for mutation. In addition, we need
to assign a probability to each of the ways in which the set of descendants can be partitioned
among ancestors at the ancient end of the segment. These partitions and probabilities are used in
calculations on earlier segments within the network.

For the root segment, we still need the expected length of the subinterval within which there
are k lineages

:::::::
lengths

:::
of

::::::::::::
subintervals. But because there are no earlier segments to worry about,

we don’t need to assign probabilities to partitions. This is fortunate, because the number of set
partitions increases rapidly with the size of the set [11, p. 418], and the set of descendants is largest
in the root segment.

To address these needs, I present two algorithms. One sums across partitions of the set of
descendants and is used in all segments except the root. The other avoids this sum and is used
only at the root.

2.4.1 Summing across set partitions

Section 2.3 calculated the expected length of the interval during which there are k ancestors, given
that there are n descendants at the recent end of the segment. If a mutation strikes one ancestor,

6

Table 1: Set partitions, integer partitions, and their probabilities, for the case in which n = 4 and
k = 2. Under “set partitions,” the value in position j of each string is the index of the ancestor of
descendant j. Thus, “1122” means that descendants 1 and 2 descend from one ancestor, whereas
3 and 4 descend from another. Ancestors are numbered in order of their appearance in the list of
descendants.

:::::::
Integer

::::::::::
partitions

:::
are

::::::::::
discussed

::
in

::::::::
section

::::
A.2

::
of

::::
the

::::::::::
appendix.

Set Integer
partitions Pr partitions Pr

1112 1/6 3 + 1 2/3
1121 1/6
1211 1/6
1222 1/6

1122 1/9 2 + 2 1/3
1212 1/9
1221 1/9

it will be shared by all descendants of that ancestor. The subset comprising these descendants
corresponds to a nucleotide site pattern.

Suppose that at some time in the past there were k ancestors. These ancestors partition the set
of descendants into k subsets. Let x1, x2, . . . , xk denote the sizes of the k subsets, i.e., the numbers
of descendants of the k ancestors. The conditional probability, given k, of such a partition is [3,
theorem 1.5, p. 11]

A = k!

(
n− 1

k − 1

)−1(n

x1, . . . , xk

)−1

(7)

The left side of table 1 shows all ways of partitioning a set of 4 descendants among 2 ancestors
along with the probability of each partition. The descendants of each ancestor define a nucleotide
site pattern. For example, the first partition is “1112,” which says that the first three descendants
share a single ancestor. A mutation in this ancestor would be shared by these descendants, and so
the descendants correspond to a site pattern.

This result is used in an algorithm that calculates (a) all possible partitions of descendants
at the ancient end of the segment along with their probabilities, and (b) the contribution of the
current segment to the expected branch length of each site pattern. The algorithm loops first
across values of k, where 1 ≤ k ≤ n. For each k, it loops across set partititions using Ruskey’s
algorithm [11, pp. 764–765]. The probability that a given partition occurs at the ancient end of a
segment, given the set of descendants at its recent end, is the product of xk(t/2N) (Eqn. 2) and A
(Eqn. 7). Each partition also makes a contribution to the expected branch length associated with k
site patterns—one for each ancestor. That contribution is the product of Lk(t, 2N) (Eqn. 6) and A
(Eqn. 7). These contributions are summed across partitions and segments to obtain the expected
branch length of each site pattern.

2.4.2 A faster algorithm for the root segment

Consider the event that a particular set of d descendants (and no others) descend from a single an-
cestor in some previous generation, given that there were k ancestors in that generation. This event
is of interest, because a mutation in this ancestor would be shared uniquely by the d descendants.

7

The probability of this event is

Qdk =

{
1 if k = 1

k
(
n−d−1
k−2

)(
n−1
k−1

)−1(n
d

)−1
if k > 1

(8)

To justify this result, consider first the case in which k = 1. This requires that all n descendants
descend from a single ancestor, so d must equal n. There is only one way this can happen, and
because the probability distribution must sum to 1, it follows that Qdk = 1. The result for k > 1
is derived in appendix A.

Example 1 Suppose k = n. In this case, each ancestor has 1 descendant, so d = 1, and Q1,n

must equal 1. Equation 8 agrees:

Q1,n = n

(
n− 2

n− 2

)(
n− 1

n− 1

)−1(n
1

)−1

= n× 1× 1× 1

n
= 1

Example 2 Suppose that k = n − 1. In this case, we are reckoning descent from the previous
coalescent interval, in which there were n − 1 ancestors. Consider first the case in which d = 1.
Among the n descendants, 2 derive from an ancestor that split, and n− 2 derive from one that did
not split. This implies that Q1,n−1 equals (n− 2)/n, the probability a random descendant derives
from an ancestor that did not split.

The case of d = 2 is also easy. There are
(
n
2

)
ways to choose 2 descendants from n, and

only one of these pairs derives from a single ancestor in the previous coalescent interval. Thus,
Q2,n−1 =

(
n
2

)−1
. Equation 8 confirms both of these results:

Q1,n−1 = (n− 1)

(
n− 2

n− 3

)(
n− 1

n− 2

)−1(n
1

)−1

= (n− 1)× (n− 2)× 1

n− 1
× 1

n
= (n− 2)/n

Q2,n−1 = (n− 1)

(
n− 3

n− 3

)(
n− 1

n− 2

)−1(n
2

)−1

= (n− 1)× 1× 1

n− 1
×
(
n

2

)−1

=

(
n

2

)−1

Example 3 We can also evaluate Eqn. 8 by comparing its results to Eqn. 7. Table 1 shows all
partitions and their probabilities for the case in which k = 2 and n = 4. Notice that subsets of
sizes 1, 2, and 3 have probabilities 1/6, 1/9, and 1/6. Eqn. 8 yields identical values:

Q1,2 = 2

(
2

0

)(
3

1

)−1(4

1

)−1

= 2× 1× 1

3
× 1

4
= 1/6

Q2,2 = 2

(
1

0

)(
3

1

)−1(4

2

)−1

= 2× 1× 1

3
× 1

6
= 1/9

Q3,2 = 2

(
0

0

)(
3

1

)−1(4

3

)−1

= 2× 1× 1

3
× 1

4
= 1/6

In the root segment, the program uses the following algorithm: Loop first across values of k,
where 1 ≤ k ≤ n. For each k, loop across values of d. If k = 1, then d = n. Otherwise, d can take

8

any integer value such that 1 ≤ d ≤ n − k + 1. For each d, calculate Qdk using Eqn. 8, and loop
across ways of choosing d of n descendants, using algorithm T of Knuth [11, p. 359]. Each such
choice corresponds to a nucleotide site pattern. Add QdkLk(t, 2N) to the expected branch length
associated with this site pattern.

2.5 Simulated data sets

To evaluate the new algorithm, I used 50 data sets simulated with msprime [9], using the model
in Fig. 1, which is identical to that used in a previous publication [20]. Parameters are defined in
the caption of Fig. 3. There are 11 free parameters. Code and numerical values of simulation
parameters are

::::
Each

::::::::::
simulated

::::::::
genome

:::::::::
consisted

::
of

:::::
1000

::::::::::::::
chromosomes,

:::::
each

::::
with

::::::::
2× 106

::::::::::
nucleotide

:::::
sites.

::::::
Each

::::::::::
simulated

:::::
data

:::
set

::::::::::
consisted

:::
of

:
4
::::::::::

genomes,
::::
one

:::::
each

:::::
from

::::::::::::
populations

::::
X,

:::
Y ,

::::
N ,

::::
and

::
D,

:::::::
which

::::::::::
represent

:::
the

:::::::::
African,

:::::::::::
European,

:::::::::::::
Neanderthal,

::::
and

:::::::::::
Denisovan

:::::::::::::
populations.

:::::
XY

::
is

::::
the

::::::::::
population

:::::::::
ancestral

:::
to

:::
X

::::
and

:::
Y ,

:::::
ND

::
is

::::
that

::::::::::
ancestral

::
to

:::
N

::::
and

:::
D,

:::::
and

::::::::
XYND

::
is

:::::
that

:::::::::
ancestral

::
to

::::
X,

:::
Y ,

::::
N ,

::::
and

::::
D.

:::::
The

::::::::::
mutation

::::
rate

:::::
was

:::::::::::
1.4× 10−8

::::
per

:::::
base

:::::
pair

::::
per

:::::::::::
generation,

:::::
and

::::
the

::::::::::::::
recombination

::::
rate

::::
was

:::::
10−8

::::
per

:::::
base

:::::
pair

::::
per

:::::::::::
generation.

:

::::
The

:::::
time

:::::::::::
parameters

:::
in

::::
the

::::::::::
simulation

::::::::
model,

:::::::::
expressed

:::
in

::::::::::::
generations,

::::
are

:::
as

:::::::
follows:

:

TXYND = 25920 separation of XY and ND
TND = 15000 separation of N and D
TXY = 3788 separation of X and Y
TD = 1734 age of Denisova fossil
TA = 1760 age of Altai Neanderthal fossil
Tα = 1897 time of Neanderthal admixture
Tε = 1896 time of Denisovan admixture

::

::::::::::
Admixture

::::::::::::
proportions

::::
are:

:

mα = 0.05 fraction of segment y2 derived from n2
mε = 0.025 fraction of segment y derived from d0

:::

::::::::::
Population

::::::
sizes

:::
are

::::::::::
expressed

:::
as

::::::::::
“haploid”

::::::::
counts,

::::::
which

::::::::::
represent

::::::
twice

::::
the

::::::::
number

:::
of

:::::::
diploid

:::::::::::
individuals.

:::::::
These

:::::::::::
parameters

::::
are:

:

2NXYND = 64964.1 ancestral population XYND
2NXY = 44869.2 population ancestral to X and Y
2NND = 5000 population ancestral to N and D

2NN = 9756.8 Neanderthal population, N
2ND = 5000 Denisovan population, D
2NX = 20000 modern African population, X
2NY = 20000 modern European population, Y

:::

:::::::::::
Simulation

::::
code

::
is
:
in section S1 of Supplementary Materials. All analyses are available

::::::::::
Simulation

::::::
results

::::
are

:
in the archive (doi:10.17605/OSF.IO/74BJF).

2.6 Data analysis
::::::::::
Analysis

:::
of

::::::::::::
simulated

::::::
data

The data analysis pipelines for both
:::
the

:::::::::::::
deterministic

::::
and

:::::::::::
stochastic

:
algorithms are detailed in

supplementary section S2.
::
In

:::::
both

::::::
cases,

::::
the

::::::::
analysis

::::
was

::::::
based

:::
on

::
a
::::::
model

:::
of

:::::::
history

:::::::::
specified

:::
by

9

mα

0.
02

6
17

50
19

50
40

00
14

60
0

46
00

52
00

0.040

0.026

mε

TA

1884 1896

1750 1950

TD

2NN

6500 9500

4000

2ND

TXY

2000 6000

14600

TND

2NXY

40000

4600 5200

2NND
0.

04
0

18
84

18
96

65
00

95
00

20
00

60
00

40
00

0

63500

63
50

02NXYND

Figure 3: Scatter plot of each parameter against each other, based on 50
:::::::::
simulated

::
data

setssimulated under the model in Fig. 1. Key: mα, fraction of admixture from N into Y ; mε,
fraction of admixture from D into Y ; TXY , separation time of X and Y ; TND separation time of
N and D, TA, age of fossil genome from population N ; TD, age of fossil from D; NXYND, size
of ancestral population; NXY , size of population ancestral to X and Y ; NND, size of population
ancestral to N and D; NN , size of population N ; ND, size of population N . The separation time,
TXYND, of XY and ND was fixed exogeneously to calibrate the molecular clock.

10

:::
the

::::::
input

:::
file

:::::::
a.lgo

:::::::::::::::
(supplementary

:::::::
section

:::::::
SB.1).

:::::
This

::::
file

:::::::
defines

:::
the

:::::::::
network

::
of

:::::::::
segments

:::::::
shown

::
in

::::
Fig.

:::
2.

:

:::::::
Several

:::
of

::::
the

::::::::::::
parameters

::
of

::::
the

:::::::::::
simulation

:::::::
model

::::::
were

:::::::
treated

:::
as

::::::
fixed

::::::::::
constants,

:::::::::
because

:::::
their

::::::
values

:::::
have

:::
no

::::::
effect

:::
on

:::::::::
expected

:::::
site

:::::::
pattern

::::::::::::
frequencies:

::::::
2NX ,

::::::
2NY ,

::::
Tα,

::::
and

::::
Tε.:::::::::

Another

::::::::::
parameter,

:::::::::
TXYND,

::::
was

:::::
fixed

:::
at

:::
its

:::::
true

:::::
value

:::
to

:::::::::
calibrate

::::
the

::::::::::
molecular

::::::
clock.

:::::
The

::::::::::
remaining

:::
11

:::::::::::
parameters

:::::
were

::::::::::
estimated.

:

For both algorithms, data analysis involves
::::::::
involved

:
5 stages. In stage 1, legofit is

::::
was

:
run

on each of 50 simulated data sets. Each run produces
:::::::::
produced

:
two output files: a .legofit file,

which contains parameter estimates, and a .state file, which records the state of the optimizer
at the end of the run. The optimizer uses the differential evolution algorithm [17], which .

::::::
This

:::::::::
algorithm

:
maintains a swarm of points,

:::::
each

:::
of

::::::
which

:::::::::::
represents

::
a

::::::
guess

::::::
about

::::
the

::::::
values

:::
of

::::
the

:::
free

::::::::::::
parameters. There are ten times as many points as free parameters. Each point represents a

guess as to the values of the 11 free parameters
:
,
:::
as

::::::::::::::
recommended

:::
by

:::::::::::::::
Price et al. [17].

Although differential evolution is good at finding global optima, it is possible that some of the
stage 1 runs will get stuck on different local optima. Stage 2 is designed to avoid this problem.
Each job in stage 2 begins by reading all 50 of the .state files produced in stage 1, and sampling
among these to construct a swarm of points. This allows legofit to choose among local optima.

Figure 3 plots pairs of free parameters after stage 2 of the analysis. Each sub-plot has 50 points,
each of which represents one of the simulated data sets. As you can see, several of the

::::
one

:::
for

:::::
each

:::::::::
simulated

:::::
data

::::
set.

::::::::
Several

:::::
pairs

:::
of

:
parameters are tightly correlatedwith each other. These

:
,
::::
and

:::::
these

:
correlations reflect “identifiability” problems: different sets of parameter values imply almost

identical site pattern frequencies. To ameliorate this problem, stage 3 of the analysis performs
::::
uses

:::
the

:::::
pclgo

::::::::
program

:::
to

::::::::
perform a principal components analysis, which re-expresses the free variables

in terms of uncorrelated principal components
::::::
(PCs). In previous publications [20–22], we have

used this step to reduce the dimension of the analysis, by excluding components that explain little
of the variance. However, excluding dimensions can introduce bias, especially in the presence of
identifiability problems, so I chose here to retain the full dimension.

:::::
Even

::::::::
without

::::
any

::::::::::
reduction

::
in

:::::::::::
dimension,

:::::::::::::
re-expression

:::
in

::::::
terms

:::
of

:::::
PCs

:::::::::
improves

::::
the

:::
fit

::
of

:::::::
model

:::
to

::::::
data,

::::::::
because

::
it
:::::::
allows

::::::
legofit

:::
to

:::::::
operate

:::
on

:::::::::::::
uncorrelated

::::::::::::
dimensions.

:

Stages 4 and 5 are like stages 1 and 2, except that the free variables are re-expressed in terms
of principal components

::::
PCs.

The program uses KL divergence [13] to measure the discrepancy between observed and pre-
dicted site pattern frequencies. Minimizing KL divergence is equivalent to maximizing multinomial
composite likelihood. The optimizer stops after a fixed number of iterations or when the difference
between the best and worst KL divergences falls to a pre-determined threshold. This threshold was
3× 10−6 for the deterministic algorithm and 2× 10−5 for the stochastic algorithm. This difference
reflects the fact that the deterministic algorithm is capable of much greater precision.

2.7 Analysis of speed as a function of model complexity

As model complexity increases, the number of states increases. This reduces the speed of the
deterministic algorithm and increases memory usage. To study this effect, I used the legosim
program, which calculates the site pattern frequencies implied by a given model. I studied a series
of models without migration or changes in population size. The models differed in the number of
populations, which ranged from four to nine. Timings were done on a 2018 MacBook Air.

2.8
::::::::::
Analysis

:::
of

:::::
real

:::::::
data

11

X Y N D S
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

...............
...............
...............
...............
..

...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
...............
...............
...............
...........

...
δ

γ
...

.............
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............
....

.............
.............
.............
.............
.............
.............
.............
.............
......

.............
.............
.............
.............
.............
.............
.............
.............
......

..

...
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............
...............
...............
..................
..................
..................
..................
..................
..................
.................
.............
.............
.............
.............
.............
.............
.....

..

...
α

β
...

Figure 4:
::
A

:::::::::::
population

::::::::
network

::::::::::
including

:::::
four

::::::::
episodes

:::
of

:::::
gene

:::::
flow.

::::::::
Upper

:::::
case

::::::
letters

:::::
(X,

:::
Y ,

:::
N ,

:::
D,

::::
and

:::
S)

::::::::::
represent

::::::::::::
populations

::::::::
(Africa,

::::::::
Europe,

:::::::::::::
Neanderthal,

:::::::::::
Denisovan,

:::::
and

::::::::::::::
superarchaic).

::::::
Greek

::::::
letters

::::::
label

::::::::
episodes

:::
of

:::::::::::
admixture.

:
I
:::::
used

::::
the

:::::::::::::
deterministic

::::::::::
algorithm

:::
to

:::::::::
replicate

::::
the

:::::::::
analysis

::
of

::::::::::::::::::
Rogers et al. [22].

:::::::
(Data

:::::
sets

::::
and

::::::::
analysis

::::
files

::::
are

:::
in

:::::::::
directory

:::::::
xyvad

::
of

::::
the

::::::::
archive

:
(doi:10.17605/OSF.IO/74BJF

:::
).)

::::::
That

::::::
paper

:::::::
studied

::::::::
modern

:::::::
human

:::::::::
sequence

:::::
data

:::::
from

::::::::
Europe

::::
and

::::::
Africa

:::::
[15],

::::::
along

:::::
with

:::::
three

::::::::::::::
high-coverage

:::::::
archaic

::::::::::
genomes:

:::::
two

:::::::::::::
Neanderthals

:::::::
(Altai

:::::::::
[19] and

::::::::
Vindija

::::::
[18]),

:::::
and

::::
one

:::::::::::
Denisovan

:::::
[16].

::::
It

::::::::
analyzed

::::::
these

:::::
data

::::::
under

::::::
eight

::::::::
different

::::::::
models,

:::
all

:::
of

::::::
which

::::
are

::::::
based

:::
on

::::
the

:::::::
history

::
in

:::::
Fig.

::
4.

:

::
In

:::::
that

::::::::
figure,

:::::::
capital

:::::::
roman

:::::::
letters

::::::
refer

:::
to

:::::::::::::
populations:

:::
X

:::
is

:::::::
Africa,

:::
Y

:::
is

::::::::
Europe,

:::
N

:::
is

::::::::::::
Neanderthal,

:::
D

::
is

:::::::::::
Denisovan,

:::::
and

::
S

::::
(for

:::::::::::::::
“superarchaic”

:::::
[19])

::
is

::
a
:::::::::::
population

:::::
that

::::::::::
separated

:::::
from

::
all

::::::
other

::::::::
humans

::::::
early

:::
in

::::
the

::::::::::::
Pleistocene.

:::::::
Greek

:::::::
letters

:::::
label

:::::::::
episodes

::
of

::::::::::::
admixture.

:::::::::
Episode

::
α

:::::
refers

:::
to

:::::::::::
admixture

:::::
from

::::::::::::::
Neanderthals

::::
into

::::::::::::
Europeans,

::
β
:::

to
:::::::::::

admixture
::::::
from

:::::::::::::
superarchaics

:::::
into

:::::::::::
Denisovans

::::::::::::::::::
[12, 18, 19, 24, 25],

::
γ
:::
to

::::::::::
admixture

:::::
from

::::::
early

::::::::
moderns

:::::
into

:::::::::::::
Neanderthals

:::::
[12],

::::
and

:
δ
:::
to

::::::::::
admixture

:::::
from

::::::::::::::
superarchaics

::::
into

::::
the

::::::::::::::::
“neandersovan”

:::::::::
ancestors

:::
of

:::::::::::::
Neanderthals

:::::
and

:::::::::::
Denisovans

::::
[22].

:

:::::::::
Following

::::::::::::::::::
Rogers et al. [22],

:
I
:::::::::::
considered

::::::
eight

:::::::
models,

:::
all

:::
of

::::::
which

::::::::
include

::
α,

:::::
and

:::::::::
including

:::
all

:::::::::::::
combinations

::
of

:::
β,

::
γ,

::::::::
and/or

::
δ.

::
I
:::::
label

:::::::
models

:::
by

::::::::::::::
concatenating

:::::::
Greek

:::::::
letters.

::::
For

:::::::::
example,

::::
αβ

::
is

:::
the

:::::::
model

::::
that

:::::::::
includes

::
α

::::
and

:::
β

::::
but

::::
not

::
γ

::::
and

:::
δ.

:::::
This

::::::::
analysis

:::
is

:::::::::
described

:::
in

:::::::
section

::::
S3

::
of

::::
the

::::::::::::
supplement.

3 Results and Discussion

I used both algorithms—one deterministic and the other stochastic—to fit 50 data sets simulated
using the model in Fig. 1.

:::::::::
simulated

:::::
data

:::::
sets.

:
In each case, this involved 200 runs of the legofit

program—4 for each of 50 data sets—and 1 run of pclgo. Altogether, the deterministic version of
this analysis took 18.7 CPU minutes. Because these calculations were parallelized, the elapsed time
was only 1.7 minutes. Using the stochastic algorithm, the same analysis took 514.8 CPU hours, or
11.4 hours of elapsed time. For this model, the deterministic algorithm is 1654 times as fast as the

12

ynd
xnd
xyd
xyn
nd
yd
yn
xd
xn
xy
d
n
y
x

−0.001 0.000 0.001
Observed Minus Fitted Frequencies

S
ite

 P
at

te
rn

Deterministic algorithm

ynd
xnd
xyd
xyn
nd
yd
yn
xd
xn
xy
d
n
y
x

−0.001 0.000 0.001
Observed Minus Fitted Frequencies

S
ite

 P
at

te
rn

Stochastic algorithm

Figure 5: Residual error of deterministic and stochastic algorithms, based on 50 simulated data
sets. Each circle refers to a different

::::::::::
simulated data set.

stochastic one.
These timings were done on a node at the Center for High Performance Computing (CHPC)

at the University of Utah, using 96 parallel threads of execution. To get a sense of how long these
calculations would take on a less powerful computer, I did one run of legofit on a 2018 MacBook
Air, using the deterministic algorithm with 2 threads. That took 26.2 seconds of CPU time or
13.7 seconds of elapsed time. By comparison, the CHPC node did this job in 12.4 seconds of CPU
time, or 1 second of elapsed time. The high-performance node is nearly 14 times as fast as the
MacBook Air, implying that the full analysis would take 24 minutes on the MacBook Air. Thus,
the deterministic algorithm makes Legofit feasible on small computers.

Figure 5 shows the residual error in site pattern frequencies under the two algorithms. Residuals
are substantially smaller under the deterministic algorithm because of its greater accuracy. When
parameters are estimated by computer simulation, each additional decimal digit of precision requires
a 100-fold increase in the number of iterations. This imposes a limit on the accuracy of the stochastic
algorithm, even with the fastest computers.

To estimate site pattern frequencies, both algorithms integrate over the states of the stochastic
process. The number of states increases with model complexity, so both algorithms are slower when
the model is complex. Figure 6 illustrates the effect on speed. In complex models, the stochastic
algorithm is faster than the deterministic one.

Figure 7 shows the parameter estimates from the 50 data sets (blue dots) along with the true
parameter values (red crosses). The two algorithms behave similarly. It does not appear that
the smaller residual error of the deterministic algorithm (Fig. 5) translates into more accurate
parameter estimates. Presumably, this is

:::::
This

::
is

::::::::::
probably

:
because most of the spread in the

parameter estimates reflects the identifiability problems seen in Fig. 3.
:::
To

:::::::::::
understand

:::::
this

::::::
effect,

::::
note

::::
the

:::::
tight

:::::::::::
correlation

:::::::::
between

:::::
TXY ::::

and
:::::::
2NXY :::

in
::::
Fig.

:::
3.

:::::
This

:::::::::::
correlation

::::::
exists

::::::::
because

:::
it

::
is

::::
hard

:::
to

:::::::::::
distinguish

::::
the

::::
case

:::
in

::::::
which

::::::
2NXY::

is
::::::
large

::::
and

:::::
TXY :::::

small
:::::
from

:::::
that

::
in

:::::::
which

:::
the

:::::::::
opposite

:
is
::::::
true.

::::::::
Because

:::
of

::::
this

:::::::::::
ambiguity,

:::::
both

:::::::::::
parameters

::::::::
exhibit

:::::
large

:::::::::::::
uncertainties

:::
in

::::
Fig.

::
7.

:

13

0

5

10

15

Execution
time
(sec)

4 5 6 7 8 9

Populations

Deterministic

Stochastic

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.............

Figure 6: Execution time of legosim, excluding system calls, in models without migration. For the
stochastic algorithm, each run used two million iterations.

mα − mε

mα + mε

mε

mα

0.00 0.02 0.04 0.06 0.08
Admixture Fraction

Deterministic algorithm

TXY

TND

TA

TD

100 200 300 400
Thousands of Years

2NXYND

2NXY

2NND

2NN

2ND

20000 40000 60000
Haploid Population Size (2N)

mα − mε

mα + mε

mε

mα

0.00 0.02 0.04 0.06 0.08
Admixture Fraction

Stochastic algorithm

TXY

TND

TA

TD

100 200 300 400
Thousands of Years

2NXYND

2NXY

2NND

2NN

2ND

20000 40000 60000
Haploid Population Size (2N)

Figure 7: Parameter estimates from 50 simulated data sets, using the deterministic and stochastic
algorithms. Blue circles are estimates and red crosses are the true parameter values.

14

Table 2:
::::
CPU

::::::
time

::::::::::
expended

::
in

:::::::::
analysis

:::
of

:::::
each

:::::::
model

:::::
from

::::::::::::::::::
Rogers et al. [22].

::::::
Each

:::::::::
analysis

:::::::
involves

:::::
204

:::::
runs

:::
of

:::::::
legofit

:::::
and

::
1
:::::

run
:::
of

:::::::
pclgo.

::::::::::
Elapsed

::::::
times

:::::
were

:::::::
much

::::::::
shorter,

:::::::::
because

:::::::::::
calculations

:::::
were

:::::
done

::
in

:::::::::
parallel.

:::::::::::::::
“Acceleration”

::
is

:::
the

:::::
ratio

:::
of

:::::::::
execution

::::::
speed

::
in

::::
the

:::::::::::::
deterministic

::::::
model

:::
to

::::
that

:::
in

::::
the

::::::::::
stochastic

:::::::
model.

::::::::
Models

::::
are

:::::::::
arranged

::
in

::::::
order

:::
of

::::::::::
increasing

::::::::::
execution

:::::
time

::::
with

::::
the

:::::::::::::
deterministic

:::::::::::
algorithm.

log10 seconds

::::::
Model

: :::::::::::::
Deterministic

: ::::::::::
Stochastic

::::::::::::
Acceleration

:

::
α

:::::::
1.60246

: :::::::
5.94980

: :::::::
22250.5

:::
αβ

: :::::::
2.60384

: :::::::
5.81015

: ::::::
1608.1

:::
αγ

: :::::::
2.83806

: :::::::
5.94417

: ::::::
1276.8

::::
αβγ

: :::::::
3.67736

: :::::::
6.03901

: :::::
230.0

:::
αδ

:::::::
4.42860

: :::::::
6.16730

: ::::
54.8

::::
αβδ

: :::::::
4.86285

: :::::::
6.04239

: ::::
15.1

::::
αγδ

: :::::::
5.47544

: :::::::
6.14022

: :::
4.6

:::::
αβγδ

: :::::::
6.04505

: :::::::
6.20171

: :::
1.4

:

Some bias is evident in these estimates. For example, the estimates of mα tend to be a little low
and those of mε a little high [20].

::::
This

::::::::
reflects

::::
the

::::::::
negative

:::::::::::
correlation

:::::::::
between

::::::
these

:::::::::::
parameters

::::
that

::::
can

:::
be

:::::
seen

:::
in

:::::
Fig.

::
3.

:::::::::
Because

::::
the

:::::
two

::::::
source

::::::::::::
populations

::::
(N

:::::
and

:::
D)

::::
are

:::
so

::::::::
similar,

:::::
they

:::
are

:::::
hard

:::
to

::::::::::::
distinguish.

::
We get a better estimate of the sum (mα + mε) than of the difference

(mα −mε). Nonetheless, the swarm of estimates tends
:::::
There

::
is
:::::

also
:::::
some

:::::
bias

:::
in

:::::
2ND ::::

and
::::::
2NN .

::
In

:::::
spite

:::
of

::::::
these

:::::::
biases,

::::
the

::::::::
swarms

::
of

::::::::::
estimates

:::::
tend

:
to enclose the true parameter value

:::::
values,

so the bias
::::::
biases

:
in these estimates is

:::
are modest compared with their uncertainties. It should

not, however, be assumed that this will always be the case. One must check for bias by doing
simulations of the sort illustrated here.

:::
To

:::::::::
illustrate

::::
the

:::::
new

::::::::::
algorithm

::
in

::
a
::::::::::
full-scale

:::::::
analsis

::
of

:::::
real

:::::
data,

::
I
::::::::::
replicated

::::
the

::::::::
analysis

:::
of

:::::::::::::::::
Rogers et al. [22].

:::::::
Table

::
2

::::::
shows

::::
the

::::::
CPU

:::::
time

:::::
used

:::
by

:::::
each

:::::::::::
algorithm

::
in

:::::::::
analysis

::
of

::::
the

::::::
eight

:::::::
models

::
in

:::::
that

:::::::::::::
publication.

::::
For

:::::
this

:::
set

:::
of

::::::::
models,

::::
the

:::::::::::::
deterministic

:::::::::::
algorithm

::
is

:::::::
always

:::::::
faster,

:::
but

:::
its

::::::::::
execution

::::::
time

::::::
ranges

:::::::
across

:::::::
several

:::::::
orders

:::
of

:::::::::::
magnitude.

:::::::
These

::::::::::
execution

::::::
times

::::
are

::::
not

:::::::
strictly

::::::::::::
comparable,

::::::::
because

:::::
they

:::::::
involve

::::::::
several

:::::::::
compute

::::::::
clusters,

::::::
which

:::::
vary

:::
in

:::::::::
processor

:::::::
speed.

::::::
These

::::::::::
differences

::::
are

:::::::
minor,

:::::::::
however,

::::::::::
compared

:::::
with

::::
the

:::::::::
enormous

:::::::::::
differences

:::
in

::::
run

:::::
time

::::
seen

:::
in

:::::
table

::
2.

:

:::
To

:::::::
choose

:::::::
among

::::::::
models,

::
I
:::::
used

::::
the

::::::::::
bootstrap

:::::::::
estimate

::
of

:::::::::::
predictive

::::::
error,

:::::::
“bepe”

::::::::::
[4, 5, 20].

::::
This

:::::::::
method

:::::
uses

:::::::::
variation

::::::::
among

:::::
data

:::::
sets

:::::
(the

::::
real

::::::
data

:::::
plus

:::
50

::::::::::
replicates

::::::::::
generated

::::
by

::
a

::::::::::::::
moving-blocks

::::::::::
bootstrap

:::::
[14])

:::
to

:::::::::::::
approximate

:::::::::
variation

:::
in

:::::::::
repeated

::::::::::
sampling.

:::
It

::::
fits

::::
the

:::::::
model

::
to

::::
one

:::::
data

:::
set

::::
and

:::::
then

:::::
tests

::::
this

:::
fit

::::::::
against

::
all

::::
the

:::::::
others.

:::::::
Table

:
3
:::::
uses

:::
all

:::::::
models

:::
to

::::::::
compare

::::
the

:::::
bepe

::::::
values

::::::::::
calculated

:::
by

::::
the

:::::::::::::
deterministic

::::
and

::::::::::
stochastic

::::::::::
algorithm.

:::
In

:::
all

::::::
cases,

::::
the

:::::::::::::
deterministic

:::::::::
algorithm

::::::
yields

::
a
:::::::
smaller

::::::
bepe

:::::
value

:::::
than

::::
the

::::::::::
stochastic

::::::::::
algorithm,

::::::::::
indicating

::
a
::::::
better

:::
fit

:::
of

::::::
model

::
to

::::::
data.

::::
The

::::::
order

::
of

::::
the

::::::
eight

::::::::
models,

:::::::::
however,

::
is

:::
the

:::::::
same.

::::::::
Because

::::
the

:::::::::::::
deterministic

::::::::::
algorithm

:::::
yields

::::::::
smaller

:::::
bepe

:::::::
values,

:::::
one

:::::::
should

:::
use

::::
the

::::::
same

::::::::::
algorithm

:::::::::::
(stochastic

::
or

::::::::::::::
deterministic)

::::
for

:::
all

:::::::
models

::
in

::::
any

:::::::::
analysis.

::::::::::::
Otherwise,

::::::
model

:::::::::
selection

::::
will

:::
be

:::::::
biased

:::
in

:::::
favor

:::
of

:::::::::::::
deterministic

:::::::
results

:::::::
because

:::
of

:::::
their

::::::::
smaller

:::::
bepe

:::::::
values.

:

::::::
When

:::::::
several

::::::::
models

:::::::
provide

:::::::::::
reasonable

::::::::::::
descriptions

:::
of

:::
the

::::::
data,

::
it

::
is
:::::::
better

:::
to

:::::::
average

:::::::
across

:::::::
models

:::::
than

::
to

:::::::
choose

:::::
just

::::
one.

::::::
This

::::::
allows

::::::::::::
uncertainty

::::::
about

::::
the

::::::
model

:::::
itself

:::
to

:::
be

:::::::::::::
incorporated

::::
into

:::::::::::
confidence

:::::::::
intervals.

::::::
For

::::
this

:::::::::
purpose,

::::::::
Legofit

:::::
uses

:::::::::::
bootstrap

::::::
model

:::::::::::
averaging,

::::::::::
“booma”

::::::
[2, 20].

:::::
The

:::::::
booma

:::::::
weight

:::
of

:::
the

::::
ith

::::::
model

::
is
::::
the

::::::::
fraction

:::
of

::::
data

:::::
sets

::::::::::
(including

::::
the

::::
real

:::::
data

::::
and

15

Table 3:
::::::::::
Bootstrap

:::::::::
estimate

::
of

::::::::::
predictive

:::::
error

:::::::
(bepe)

::::::
values

::::
and

::::::::::
bootstrap

:::::::
model

:::::::
average

:::::::::
(booma)

::::::::
weights,

::::::
based

:::
on

::::
the

:::::
data

::
of

::::::::::::::::::
Rogers et al. [22].

:::::::
Values

::::
for

:::
the

:::::::::::
stochastic

::::::::::
algorithm

:::
are

:::::
also

:::::
from

::::
that

::::::::::::
publication.

::::::::
Models

::::
are

:::::::::
arranged

::
in

::::::
order

::
of

:::::::::::
decreasing

:::::
bepe

:::::::
values.

Deterministic Stochastic

::::::
Model

: :::::
bepe

: ::::::
weight

: :::::
bepe

: ::::::
weight

::
α

:::::::::::
1.13× 10−6

: :
0

: :::::::::::
1.16× 10−6

: :
0
:

:::
αδ

:::::::::::
0.82× 10−6

: :
0

: :::::::::::
0.87× 10−6

: :
0
:

:::
αγ

: :::::::::::
0.61× 10−6

: :
0

: :::::::::::
0.62× 10−6

: :
0
:

::::
αγδ

: :::::::::::
0.40× 10−6

: :
0

: :::::::::::
0.44× 10−6

: :
0
:

:::
αβ

: :::::::::::
0.14× 10−6

: :
0

: :::::::::::
0.18× 10−6

: :
0
:

::::
αβγ

: :::::::::::
0.14× 10−6

: :
0

: :::::::::::
0.17× 10−6

: :
0
:

::::
αβδ

: :::::::::::
0.11× 10−6

: ::::
0.02

: :::::::::::
0.15× 10−6

: ::::
0.16

:

:::::
αβγδ

: :::::::::::
0.10× 10−6

: ::::
0.98

: :::::::::::
0.13× 10−6

: ::::
0.84

:

::
50

::::::::::
bootstrap

:::::::::::
replicates)

::
in

::::::
which

:::::
that

::::::
model

::::::::
“wins,”

::::
i.e.

:::
has

::::
the

:::::::
lowest

:::::
value

:::
of

:::::
bepe.

:::::
The

::::::::
weights

::
of

:::
all

:::::::
models

::::
are

::::::
shown

:::
in

::::::
table

::
3.

:

::::
The

::::
new

:::::::::
analysis,

::::::
using

:::
the

:::::::::::::
deterministic

::::::::::
algorithm,

::::::::::
replicates

:::
the

::::::
main

::::::
result

::
of

:::::::::::::::::
Rogers et al. [22]:

::::
that

::::
the

:::::
most

:::::::::
complex

::::::
model

::::::::
(αβγδ)

::
is

::::::::::
preferred

::::
over

:::
all

::::::::
others.

::::
The

:::::::::
strength

:::
of

::::
this

:::::::::::
preference,

::::::::
however,

::
is
:::::::::
stronger

::::::
under

::::
the

:::::::::::::
deterministic

::::::::::
algorithm.

:::::
The

:::::::::
2nd-place

:::::::
model

::::::
(αβδ)

::::
gets

:::::
16%

::
of

::::
the

::::::
weight

:::::
with

::::
the

::::::::::
stochastic

::::::::::
algorithm

::::
but

::::
only

::::
2%

:::::
with

:::
the

:::::::::::::
deterministic

:::::
one.

:::::
The

:::::::
greater

:::::::::
precision

::
of

:::
the

::::::::::::::
deterministic

::::::::::
algorithm

::::::::::
apparently

::::::::::
improves

::::::::
Legofit’s

:::::::
ability

:::
to

::::::::::::
discriminate

:::::::
among

::::::::
models.

::::
The

::::::::::
difference

::::::::
between

::::::
these

:::::::
models

:::
is

:::::
that

::::::
αβγδ

::::::::
includes

:::::
gene

:::::
flow

:::::
from

::::::
early

::::::::
modern

::::::::
humans

::::
into

::::::::::::::
Neanderthals,

::
as

:::::::::
proposed

:::
by

:::::::::::::::::::::
Kuhlwilm et al. [12].

::::
The

::::::::
current

:::::::
results

::::::::::
strengthen

::::
the

:::::
case

:::
for

::::
this

:::::::::::
hypothesis.

:

::::
The

::::::::::::::::
model-averaged

::::::::::
estimates

:::
of

:::
all

:::::::::::
parameters

::::
are

:::::::
shown

:::
in

:::::::::::::::
supplementary

::::::
table

::::
S2.

:::::
The

:::
two

:::::::::::
algorithms

::::::::
provide

::::::::
similar

::::::::::
estimates,

::::
but

::::::
there

::::
are

::::
two

::::::::::::
differences.

:::::::
First,

::::
the

:::::::::::::
deterministic

:::::::::
algorithm

:::::::::
provides

:::
an

::::::::::
unrealistic

:::::::::
estimate

:::
of

:::::
TXY ,

::::
the

::::::::::
separation

:::::
time

:::
of

:::::::::::
Europeans

::::
and

:::::::::
Africans.

::::
This

:::::::::::::::
estimate—323

::::::::::::
generations,

:::
or

:::::::
about

:::::
9000

::::::
y—is

:::::::
clearly

::::
too

:::::::
small.

::::::
This

::::
may

:::::::::
indicate

:::::
that

::::::::::
something

::
is

::::::::
missing

:::::
from

:::
the

:::::::
model

::
or

:::::
that

::::::::::::::
identifiability

:::::::::
problems

:::::
have

:::::::::::
introduced

:::::
bias.

::::::::
Further

:::::
work

::::::
would

:::
be

:::::::
needed

::
to

::::::::
evaluate

::::::
these

::::::::::::
alternatives.

::::::::
Second,

::::
the

::::::::
estimate

:::
of

:::
NS::

is
:::::
even

::::::::::::
larger—over

::::::::::::::
700,000—with

:::
the

:::::::::::::
deterministic

::::::::::
algorithm

:::::
than

:::::
with

:::
the

::::::::::
stochastic

:::::
one.

:::::
This

:::::::::
supports

:::
our

:::::::::
previous

::::::::::
suggestion

:::::
that

:::
the

:::::::::::::
superarchaic

:::::::::::
population

::::
was

::::::
large

::
or

:::::::
deeply

:::::::::::
subdivided

:::::
[22].

:

4 Conclusions

Legofit’s new deterministic algorithm provides an enormous increase in
:::::::::
increases

:::::
both speed and ac-

curacyand makes the package practicable on desktop computers.
:
.
::::
The

:::::::::
increase

::
in

:::::::::
accuracy

:::::::
results

::
in

:::::::
smaller

::::::::
residual

:::::::
errors

::::
and

::::::
better

::::::::::::::
discrimination

:::::::::
between

:::::::::::
alternative

:::::::::::
hypotheses.

:::
It

::::
has

:::
no

:::::
large

:::::
effect

:::
on

:::::::::::
confidence

:::::::::
intervals,

:::::::::
however,

:::::::::
because

:::::
these

::::
are

::::::::::
primarily

::::::::::
measuring

::::::::::::
uncertainty

:::::::
arising

::::
from

:::::::::::
statistical

:::::::::::::
identifiability

::::::::::
problems.

::::::
The

::::::::
increase

:::
in

::::::
speed

::
is
::::::::::
dramatic

:::::
with

:::::::
models

:::
of

::::::
small

::
to

::::::::::
moderate

:::::::::::
complexity

:::::
and

::::::
makes

::::::::
Legofit

:::::::::::
practicable

::::
on

:::::::
laptop

:::::::::::
computers.

::::::
The

:::::::::::::
deterministic

:::::::::
algorithm

::::::
slows

:::::::::::::
dramatically,

:::::::::
however,

::
as

::::::::
models

::::::::
increase

::
in

::::::::::::
complexity.

::::
For

:::::
very

::::::::
complex

::::::::
models,

:::
the

::::::::::
stochastic

::::::::::
algorithm

::
is
:::::
still

::::::::
needed.

:

::::
The

::::::::::::::
deterministic

::::::::::
algorithm

::::::::::
replicated

::::
all

::::
the

::::::::
findings

:::
of

::::::::::::::::::
Rogers et al. [22].

::::::::::
Because

:::
of

:::
its

:::::::
greater

:::::::::
accuracy,

::
it

:::::::::
provided

::::::::
stronger

::::::::
support

:::
for

::::
the

::::::::::
hypothesis

:::::
that

:::::
early

:::::::
modern

::::::::
humans

::::::::::::
contributed

:::::
genes

:::
to

:::::::::::::
Neanderthals

:::::
[12].

::
It

:::::
also

:::::::::::::
strengthened

:::
the

:::::::::
evidence

:::::
that

:::
the

:::::::::::::
superarchaic

:::::::::::
population

::::
was

16

:::::
large

::
or

:::::::
deeply

:::::::::::
subdivided

:::::
[22].

:

:::::::
Legofit

::
is

:::::
open

:::::::
source

::::
and

::::::
freely

:::::::::
available

:::
at

:
https://github.com/alanrogers/legofit

:
.
:

Acknowledgements

I thank Greg Martin for comments on appendix B. The Legofit package is freely available at .

:
,
::::::::::
Elizabeth

:::::::::
Cashdan

::::
for

:::::::::
editorial

::::::::::::
suggestions,

:::::
and

::::::
those

::::
who

::::::::::
reviewed

::::
the

:::::::::::
manuscript

::::
for

:::::
PCI

:::::::::::::
Mathematical

::::
and

:::::::::::::::
Computational

::::::::
Biology

:
.
:
Analysis files are archived at doi:10.17605/OSF.IO/

74BJF. This work was supported by NSF BCS 1638840, NSF BCS 1945782, and the Center for
High Performance Computing at the University of Utah.

A The probability that d of n descendants derive from 1 of k

ancestors

Eqn. 8 presents a formula for Qdk, the probability that a particular set of d descendants, chosen
from a total of n, derives from a single unspecified ancestor, given that there were k ancestors in
that ancestral generation. If k = 1, Qdk = 1 as explained above. The result for k > 1 can be
derived in two different ways.

A.1 Short argument

Condition on the event that r of the k ancestors have
::::::::
Suppose

:::::
that

:::::
some

:::::::::
ancestor

::::
has

:
d descen-

dantseach. The probability that a particular group of d descendents derives from one of these is
r/
(
n
d

)
::::
this

:::::::::
ancestor

::
is

::::::
1
/(

n
d

)
, where

(
n
d

)
is the number of ways of choosing d descendants from a

total of n. The corresponding unconditional probability is Qdk = E[r]/
(
n
d

)
,

:
If

::
r
::::::::::
ancestors

:::::
have

::
d

:::::::::::
descendants

::::::
each,

::::
the

:::::::::::
probability

:::
of

::::::::
descent

:::::
from

::::
one

::
of

::::::
these

::
is
:::::::
r
/(

n
d

)
.
:::

In
::::::::

reality,
::
r

::
is

::
a

::::::::
random

::::::::
variable,

::::
and

::::
the

:::::::::::
probability

:::::::::
becomes

::::::::::::::::
Qdk = E[r]

/(
n
d

)
,
:
where E[r] is the expected value of r.

To derive E[r], number the ancestors from 1 to k, and let yi represent the number of descendants
of the ith ancestor, where yi > 0 and

∑
yi = n. I will refer to a particular set of values, y1, . . . , yk,

as an allocation of descendants among ancestors. The number of such allocations is
(
n−1
k−1

)
[6,

pp. 38–39]. Furthermore, each allocation has the same probability,
(
n−1
k−1

)−1
, under the coalescent

process [3, p. 13].
The k ancestors are statistically equivalent, which implies that E[r] =

∑k
i=1 Pr{yi = d} =

kPr{yi = d} for an arbitrary ancestor i. If this ancestor has d descendants, there are
(
n−d−1
k−2

)

ways, each with probability
(
n−1
k−1

)−1
, to allocate the n− d remaining descendants among the k− 1

remaining ancestors. Thus Pr{yi = d} =
(
n−d−1
k−2

)(
n−1
k−1

)−1
, and Qdk equals the expression in Eqn. 8.

A.2 Longer argument

The k ancestors define a partition of the set of descendants into k subsets, each corresponding
to a different ancestor. Let x1, x2, . . . , xk denote the sizes of the k subsets, i.e., the numbers of
descendants of the k ancestors. The probability of such a partition is given above in Eqn. 7.
Suppose that a set of d descendants (and no others) derive from a single ancestor in interval k.
This can happen only if xi = d for some i. The ancestors are numbered in an arbitrary order, so

17

let us set xk = d and rewrite Eqn. 7 as

A = k!

(
n− 1

k − 1

)−1(n
d

)−1(n− d
x1, . . . , xk−1

)−1

To calculate Qdk, we need to sum this quantity across all ways to partition the set of n−d remaining
descendants into k − 1 subsets.

This is not the same as summing across values of xi, because each array of xi values may
correspond to numerous partitions of the set of descendants. This is illustrated in table 1, where
the left side lists the 7 ways of partitioning a set of 4 descendants among 2 ancestors, along with the
probability of each partition as given by Eqn. 7. The first four set partitions have equal probability,
because each one divides the descendants into subsets of sizes 3 and 1, and the xj values of these
partitions therefore make equal contributions to Eqn. 7. Similarly, the last three set partitions
have equal probability, because each divides the ancestors into two sets of size 2. These two cases:
3 + 1 = 4 and 2 + 2 = 4 are the two ways of expressing 4 as a sum of two positive integers. Eqn. 7
implies that all set partitions corresponding to a given integer partition have equal probability.

There are
(

n−d
x1,...,xk−1

)/∏
m cm! set partitions for a given partition of the integer n−d into k− 1

summands [1, theorem 13.2, p. 215]. In this expression, cm is the number of times m appears
among x1, . . . , xk−1. Multiplying this into A and summing gives

Qdk = k!

(
n− 1

k − 1

)−1(n
d

)−1∑(∏

m

cm!

)−1

(9)

where the sum is over ways of partitioning n − d into k − 1 summands. Appendix B shows that
this sum equals

(
n−d−1
k−2

)
/(k − 1)!. Substituting into Eqn. 9 reproduces Eqn. 8.

B An identity involving integer partitions

The partition of a positive integer n into k parts can be written as n =
∑k

i=1 xi, where the xi are
positive integers. On the other hand, this

:::::
This same partition is also n =

∑
i ici, where ci is the

number of times i appears among the xi values. In other words, ci is the multiplicity of i in the
partition. In terms of these multiplicities, k =

∑
ci. This appendix will show that

∑(∏

i

ci!

)−1

=
1

k!

(
n− 1

k − 1

)
(10)

where the sum is across all partitions of an integer n into k parts.
This identity follows from the fact that there are

(
n−1
k−1

)
ways to put n balls into k boxes so that

no box is empty [6, pp. 38–39]. Let us call each of these an “allocation” of balls to boxes. For
each allocation, there is a corresponding partition of the integer n into k parts. The number of
allocations often larger than the number of partitions. For example, there are

(
2
1

)
= 2 ways to put

3 balls into 2 boxes, **|* and *|**, where the stars represent balls and the bar separates boxes.
Both allocations, however, correspond to a single partition, 3 = 2 + 1, of the integer 3. For a given
integer partition, c1, c2, . . ., there are k!/

∏
ci! distinct ways to allocate balls to boxes. (This is the

number of ways to reorder the boxes while ignoring the order of boxes with equal numbers of balls.)
The sum of this quantity across partitions must therefore equal

(
n−1
k−1

)
. Dividing both sides by k!

produces identity 10. Greg Martin posted a different proof of this identity on StackExchange.2

2https://math.stackexchange.com/questions/938280/on-multiplicity-representations-of-integer-

partitions-of-fixed-length

18

References

[1] George E. Andrews. The Theory of Partitions. Addison Wesley, Reading, MA, 1976.

[2] Steven T Buckland, Kenneth P Burnham, and Nicole H Augustin. Model selection: an integral
part of inference. Biometrics, 53(2):603–618, 1997.

[3] Richard Durrett. Probability Models for DNA Sequence Evolution. Springer, New York, 2nd
edition, 2008.

[4] Bradley Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation.
Journal of the American Statistical Association, 78(382):316–331, 1983.

[5] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman and
Hall, New York, 1993.

[6] William Feller. An Introduction to Probability Theory and Its Applications, volume II. Wiley,
New York, 2nd edition, 1971.

[7] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software, 33(2):13–es, 2007. ISSN 0098-3500.

[8] RC Griffiths and Simon Tavaré. The age of a mutation in a general coalescent tree. Stochastic
Models, 14(1-2):273–295, 1998.

[9] Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS Computational Biology, 12(5):1–22, 5 2016.

[10] Motoo Kimura. The number of heterozygous nucleotide sites maintained in a finite population
due to steady flux of mutation. Genetics, 61:893–903, 1969.

[11] Donald E. Knuth. The Art of Computer Programming: Volume 4A, Combinatorial Algorithms.
Part 1. Addison-Wesley, New York, 2011. ISBN 0-201-03804-8.

[12] Martin Kuhlwilm, Ilan Gronau, Melissa J. Hubisz, Cesare de Filippo, Javier Prado-Martinez,
Martin Kircher, Qiaomei Fu, Hernán A. Burbano, Carles Lalueza-Fox, Marco de la Rasilla,
Antonio Rosas, Pavao Rudan, Dejana Brajkovic, Željko Kucan, Ivan Gušic, Tomas Marques-
Bonet, Aida M. Andrés, Bence Viola, Svante Pääbo, Matthias Meyer, Adam Siepel, and Sergi
Castellano. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature,
530(7591):429–433, Feb 2016. ISSN 1476-4687.

[13] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, Mar 1951.

[14] Regina Y. Liu and Kesar Singh. Moving blocks jacknife and bootstrap capture weak depen-
dence. In Raoul LePage and Lynne Billard, editors, Exploring the “Limits” of the Bootstrap,
pages 225–248. Wiley, New York, 1992.

[15] Swapan Mallick, Heng Li, Mark Lipson, Iain Mathieson, Melissa Gymrek, Fernando Racimo,
Mengyao Zhao, Niru Chennagiri, Susanne Nordenfelt, Arti Tandon, Pontus Skoglund, Iosif

19

Lazaridis, Sriram Sankararaman, Qiaomei Fu, Nadin Rohland, Gabriel Renaud, Yaniv Er-
lich, Thomas Willems, Carla Gallo, Jeffrey P. Spence, Yun S. Song, Giovanni Poletti, Fran-
cois Balloux, George van Driem, Peter de Knijff, Irene Gallego Romero, Aashish R. Jha,
Doron M. Behar, Claudio M. Bravi, Cristian Capelli, Tor Hervig, Andres Moreno-Estrada,
Olga L. Posukh, Elena Balanovska, Oleg Balanovsky, Sena Karachanak-Yankova, Hovhannes
Sahakyan, Draga Toncheva, Levon Yepiskoposyan, Chris Tyler-Smith, Yali Xue, M. Syafiq Ab-
dullah, Andres Ruiz-Linares, Cynthia M. Beall, Anna Di Rienzo, Choongwon Jeong, Elena B.
Starikovskaya, Ene Metspalu, Jüri Parik, Richard Villems, Brenna M. Henn, Ugur Hodoglugil,
Robert Mahley, Antti Sajantila, George Stamatoyannopoulos, Joseph T. S. Wee, Rita Khu-
sainova, Elza Khusnutdinova, Sergey Litvinov, George Ayodo, David Comas, Michael F. Ham-
mer, Toomas Kivisild, William Klitz, Cheryl A. Winkler, Damian Labuda, Michael Bamshad,
Lynn B. Jorde, Sarah A. Tishkoff, W. Scott Watkins, Mait Metspalu, Stanislav Dryomov,
Rem Sukernik, Lalji Singh, Kumarasamy Thangaraj, Svante Pääbo, Janet Kelso, Nick Patter-
son, and David Reich. The Simons Genome Diversity Project: 300 genomes from 142 diverse
populations. Nature, 538:201–206, 2016. ISSN 1476-4687.

[16] Matthias Meyer, Martin Kircher, Marie-Theres Gansauge, Heng Li, Fernando Racimo, Swapan
Mallick, Joshua G Schraiber, Flora Jay, Kay Prüfer, Cesare de Filippo, Peter H. Sudmant,
Can Alkan, Qiaomei Fu, Ron Do, Nadin Rohland, Arti Tandon, Michael Siebauer, Richard E.
Green, Katarzyna Bryc, Adrian W. Briggs, Udo Stenzel, Jesse Dabney, Jay Shendure, Jacob
Kitzman, Michael F. Hammer, Michael V. Shunkov, Anatoli P. Derevianko, Nick Patterson,
Aida M. Andrés, Evan E. Eichler, Montgomery Slatkin, David Reich, Janet Kelso, and Svante
Pääbo. A high-coverage genome sequence from an archaic Denisovan individual. Science, 338
(6104):222–226, 2012.

[17] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer Science and Business Media, Berlin, 2006.

[18] Kay Prüfer, Cesare de Filippo, Steffi Grote, Fabrizio Mafessoni, Petra Korlević, Mateja Ha-
jdinjak, Benjamin Vernot, Laurits Skov, Pinghsun Hsieh, Stéphane Peyrégne, David Reher,
Charlotte Hopfe, Sarah Nagel, Tomislav Maricic, Qiaomei Fu, Christoph Theunert, Rebekah
Rogers, Pontus Skoglund, Manjusha Chintalapati, Michael Dannemann, Bradley J. Nelson,
Felix M. Key, Pavao Rudan, Željko Kućan, Ivan Gušić, Liubov V. Golovanova, Vladimir B.
Doronichev, Nick Patterson, David Reich, Evan E. Eichler, Montgomery Slatkin, Mikkel H.
Schierup, Aida Andrés, Janet Kelso, Matthias Meyer, and Svante Pääbo. A high-coverage
Neandertal genome from Vindija Cave in Croatia. Science, 358(6363):655–658, 2017.

[19] Kay Prüfer, Fernando Racimo, Nick Patterson, Flora Jay, Sriram Sankararaman, Susanna
Sawyer, Anja Heinze, Gabriel Renaud, Peter H Sudmant, Cesare de Filippo, Heng Li, Swa-
pan Mallick, Michael Dannemann, Qiaomei Fu, Martin Kircher, Martin Kuhlwilm, Michael
Lachmann, Matthias Meyer, Matthias Ongyerth, Michael Siebauer, Christoph Theunert, Arti
Tandon, Priya Moorjani, Joseph Pickrell, James C. Mullikin, Samuel H. Vohr, Richard E.
Green, Ines Hellmann, Philip L. F. Johnson, Hélène Blanche, Howard Cann, Jacob O. Kitz-
man, Jay Shendure, Evan E. Eichler, Ed S. Lein, Trygve E. Bakken, Liubov V. Golovanova,
Vladimir B. Doronichev, Michael V. Shunkov, Anatoli P. Derevianko, Bence Viola, Mont-
gomery Slatkin, David Reich, Janet Kelso, and Svante Pääbo. The complete genome sequence
of a Neanderthal from the Altai Mountains. Nature, 505(7481):43–49, 2014.

[20] Alan R. Rogers. Legofit: Estimating population history from genetic data. BMC Bioinfor-
matics, 20:526, 2019.

20

[21] Alan R. Rogers, Ryan J. Bohlender, and Chad D. Huff. Early history of Neanderthals and
Denisovans. Proceedings of the National Academy of Sciences, USA, 114(37):9859–9863, 2017.

[22] Alan R. Rogers, Nathan S. Harris, and Alan A. Achenbach. Neanderthal-Denisovan ancestors
interbred with a distantly-related hominin. Science Advances, 6(8):eaay5483, 2020.

[23] Simon Tavaré. Line-of-descent and genealogical processes, and their applications in population
genetics models. Theoretical Population Biology, 26:119–164, 1984.

[24] P. J. Waddell. Happy New Year Homo erectus? More Evidence for Interbreeding with Archaics
Predating the Modern Human/Neanderthal Split. ArXiv, 1312.7749, December 2013.

[25] Peter J Waddell, Jorge Ramos, and Xi Tan. Homo denisova, correspondence spectral analysis,
finite sites reticulate hierarchical coalescent models and the Ron Jeremy hypothesis. ArXiv,
1112.6424, 2011.

[26] Stephen Wooding and Alan R. Rogers. The matrix coalescent and an application to human
SNPs. Genetics, 161:1641–1650, 2002.

21

Supplementary Materials∗

Alan R. Rogers

May 3, 2021

S1 Simulations

In the archive, simulation code and simulated data sets are in directory ae/sim. To simulate 50
data sets using msprime [1], I executed the following bash command:

seq 0 49 | xargs -n 1 bash sim.sh

This invokes the shell script sim.sh 50 times. This shell script looks like this:

ofile=sim${1}.opf

efile=sim${1}.err

python3 msp.py -r | simpat 1>${ofile} 2>${efile}

Here, simpat is part of the Legofit package, and msp.py is a Python script that runs msprime. It
is listed in appendix SA.1 on p. 3 and defines the model and all parameter values. This command
generates 50 output files with names like sim0.opf, sim1.opf, and so on.

S2 Data analysis
::::::::::::
Analysis

:::
of

:::::::::::::::
simulated

:::::::
data

S2.1 Deterministic algorithm

Analysis files using the deterministic algorithm can found in directory ae/exact within the archive.
The pipeline in that directory is designed for use on a compute cluster running slurm, and the details
of this pipeline can be found within that directory in the files README.md, pipeline.sh, a1.slr
(appendix SB.2, p. 9), a2.slr (appendix SB.3, p. 10), pclgo.slr (appendix SB.4, p. 11), b1.slr
(appendix SB.5, p. 11), and b2.slr (appendix SB.6, p. 12). However, this analysis is fast enough
to run on an ordinary desktop computer, so I will describe the underlying Legofit commands here
without reference to commands involving the cluster.

The analysis proceeds in several stages. Stages 1 and 2 use file a.lgo, which describes the
simulation model accurately, except that the parameter values are perturbed away from their true
values. Stage 1 executes the following command for data set 0:

legofit -1 -d 0 --stateOut a1-0.state --tol 3e-6 -S 5000 a.lgo \

../sim/sim0.opf > a1-0.legofit

∗This supplement accompanies “An Efficient Algorithm for Estimating Population History from Genetic Data”

1

Similar commands are executed for each of the other 49 data sets. Here a.lgo is the input file
describing the model of population history, ../sim/sim0.opf is the simulated data set to be
analyzed, and a1-0.state is the name of an output file that will record the optimizer’s final state.
The argument “-1” says not to ignore singleton site patterns, “-d 0” says to use the deterministic
algorithm without ignoring states with low probability, “--tol 3e-6” tells the optimizer to stop
when the spread of objective function values falls to 3×10−6, and “-S 5000” tells the optimizer to do
at most 5000 iterations. Legofit writes to standard output, which is redirected into a1-0.legofit.

Legofit uses the differential evolution optimization algorithm [2], which is quite good at finding
global optima. Nonetheless, it is still possible that some of the 50 jobs in stage 1 will have gotten
stuck on different local optima. To deal with this problem, each job in stage 2 of the analysis begins
by reading the 50 .state files produced in stage 1, and generating an initial swarm of points that
includes points from all 50 of the stage 1 jobs. Each stage 2 job is then able to choose among the
optima found in stage 1. The legofit command for data set 0 in stage 2 looks like this:

legofit -1 -d 0 --tol 3e-6 -S 5000 a.lgo ../sim/sim0.opf \

--stateIn a1-0.state \

--stateIn a1-1.state \

...

--stateIn a1-49.state > a2-0.legofit

This is just like the stage 1 command, except that there is no --stateOut command, and there are
50 --stateIn commands. Stage 2 generates 50 output files with names like a2-0.legofit.

Stages 1 and 2 present the optimizer with a challenge, because several of the free variables
are tightly correlated, as shown in Fig. 3 of the main text. To alleviate this problem, stage 3
re-expresses the free variables in terms of principal components. To do this, pclgo reads a.lgo

along with all 50 of the .legofit files produced in stage 3, and writes a single output file called
b.lgo. The command that does this is

(grep ^# a.lgo; pclgo a.lgo a2-*.legofit; grep -v ^# a.lgo |

egrep -v "\<free\>") > b.lgo

This prints into b.lgo (1) the comments from a.lgo, (2) the free variables redefined as principal
components, and (3) the rest of a.lgo. In previous publications, we have used the --tol argument
of pclgo in order to reduce the number of dimensions. In the current analysis, we omit that
argument, so there is no reduction in dimension. It is possible that reducing dimension can introduce
bias, especially when there are identifiability problems in the data. Even without any reduction in
dimension, pclgo makes the optimizer’s job easier by re-expressing in orthogonal dimensions.

Stages 4 and 5 are just like stages 1 and 2, except that they use b.lgo instead of a.lgo.

S2.2 Stochastic algorithm

The stochastic algorithm is much slower and is best run on a compute cluster. The full pipeline,
including slurm scripts, is available in the archive, but I will ignore cluster-related details here.
Directory ae/stoch contains the code for and results from analysis under the stochastic algorithm,
which follows the same steps as the deterministic one. The command for stage 1 looks like

legofit -1 --stateOut a1-0.state --tol 3e-5 \

-S 5000@10000 -S 100@100000 -S 1000@2000000 a.lgo ../sim/sim0.opf \

> a1-0.legofit

2

Note that the -d 0 argument has been omitted. This tells legofit to use the default stochas-
tic algorithm. I’m using a looser tolerance (--tol 3e-5 rather than --tol 3e-6), because the
stochastic algorithm can’t achieve the same accuracy. Finally, the -S arguments are different. The
first -S argument tells legofit to begin with 5000 generations of differential evolution, in each of
which the objective function is evaluated using 10000 iterations of coalescent simulation. The next
-S argument says to do 100 differential evolution generations with 100,000 coalescent iterations.
The final one specifies 1000 differential evolution generations with 2,000,000 coalescent iterations.
The optimizer will stop before these iterations are complete if it reaches the goal specified with
--tol.

Stage 2 of the stochastic algorithm is similar to stage 2 of the deterministic one, except that it
does not use the -d 0 argument, and it specifies: --tol 2e-5 -S 1000@2000000. The tolerance
is somewhat tighter than in stage 1, and there is only one -S argument.

Stage 3 of the stochastic algorithm is just like stage 3 of the deterministic algorithm. Stages 4
and 5 of the stochastic algorithm are just like stages 1 and 2, except that b.lgo is used instead of
a.lgo.

S3
::::::::::::::::
Replication

:::
of

::::::::::
results

:::::::
from

::::::::::::::::::::::::::::::::
Rogers et al. [4] using

:::::
the

::::::::::::::::::::
deterministic

::::::::::::::
algorithm

::
To

::::::::::
illustrate

::::
the

::::
new

:::::::::::::
deterministic

::::::::::
algorithm

:::
in

::
a
::::::::
realistic

:::::::::
context,

:
I
:::::::::::
reanalyzed

::::
the

::::::
eight

:::::::
models

::::::::::
considered

:::
by

:::::::::::::::::
Rogers et al. [4],

::::::
using

:::
the

::::::
same

:::::
data

::::
set,

::::
and

::::
the

::::::
same

::::::::::
bootstrap

::::::::::
replicates.

::::::
This

::::::::
analysis

::
is

:::::::::
described

:::
in

:::::::
section

::::
2.8

::
of

::::
the

::::::
main

:::::
text.

:::::
This

::::::::::::
supplement

::::::::
provides

:::::::::::
additional

::::::
detail.

:

:::::
Each

:::::::
model

:::
is

::::::::
defined

::::::
using

:::
an

::::::
input

::::
file

:::
in

:::::
.lgo

::::::::
format.

::::::
The

::::
one

::::
for

:::::::
model

::::::
αβγδ

:::
is

:::
in

:::::::::
appendix

::::::
SC.1,

:::::
page

:::
13.

:::::
The

:::
22

:::::::::::
parameters

::::::::
defined

:::::
there

::::
are

::::::
listed

::
in

::::::
table

::::
S1.

:

::::
The

:::::::
legofit

::::::::
program

:::::
was

::::
run

:::::
using

::::
the

:::
-d

::
0

:::::::
option,

::::::
which

::::::::
invokes

:::
the

:::::::::::::
deterministic

:::::::::::
algorithm,

::::
with

::
a
::::::::::
tolerance

:
(
::::::
--tol

::::::
3e-6

:
)
::
of

::::::::::
3 × 10−6.

::::::
This

:::::::::
tolerance

::::::
value

::
is

::::::
much

::::::::
smaller

:::::
than

:::::
that

:::::
used

::
by

:::::::::::::::::
Rogers et al. [4].

:::
It

::::
tells

::::
the

::::::::::
estimator

::
to

:::::::::
attempt

:::
to

::
fit

::::
the

:::::::
model

::
to

:::::
very

:::::
high

::::::::::
precision.

:::::
One

::
of

::::
the

::::::
slurm

:::::::
scripts

:::::
used

::
in

::::
this

:::::::::
analysis

::
is

:::::::
shown

::
in

::::::::::
appendix

:::::
SC.2

:::
on

:::::
page

:::
15.

:

:
I
:::::
used

::::
the

:::::::::
bootstrap

:::::::::
estimate

::
of

::::::::::
predictive

::::::
error

::::::
(bepe)

::::
for

::::::
model

:::::::::
selection

::::
and

::::::::::
bootstrap

::::::
model

:::::::::
averaging

:::::::::
(booma)

::::
for

::::::
model

::::::::::
averaging

::::
[3].

:::::
The

::::::::::::::::
model-averaged

::::::::::
estimates

::
of

::::
all

:::::::::::
parameters

::::
are

::::::
shown

::
in

::::::
table

::::
S2.

:

SA Simulations

SA.1 msp.py

#!/usr/bin/python3

import msprime

import os, sys, time

def usage():

print("Usage: ./msp.py [options]")

print(" where options may include:")

print(" -r or --run: run simulation. Default: run")

print(" DemographyDebugger")

sys.exit(1)

3

Table S1:
:::::::::::
Parameters

:::::
used

:::
in

::::::::::
reanalysis

:::
of

:::::
data

:::::
from

:::::::::::::::::
Rogers et al. [4].

:::::
The

:::::::
“text”

:::::::
column

::::::
gives

:::
the

:::::::
symbol

:::::
used

:::
in

:::
the

:::::
text

::
of

::::
this

:::::::::::
document;

::::
the

:::::::
“code”

:::::::
column

::::::
gives

:::
the

::::::::
symbol

::::
used

:::
in

::::::
input

:::
file

::::::
a.lgo

:::::::::
(appendix

:::::::
SC.1).

::::::::::::
Population

:::::
sizes

:::
are

:::
in

::::::::::
“haploid”

::::::
units,

::::::
which

::::::
refer

::
to

::::::
twice

::::
the

::::::::
number

::
of

:::::::
diploid

::::::::::::
individuals.

Symbol

::::
text

: :::::
code

:::::::::::
Description

:

:::::::
TXYND: ::::::

Txynd
::::::::::
separation

:::::
time

:::
of

::::
XY

::::
and

:::::
ND

:::::::::
TXYNDS :::::::

Txynds
::::::::::
separation

:::::
time

:::
of

::
S

:::::
TND ::::

Tnd
::::::::::
separation

:::::
time

:::
of

::
N

:::::
and

::
D

::::
TN0 ::::

Tav
::::
time

:::
of

:::::::
change

:::
in

::::::::::::
Neanderthal

:::::::::::
population

::::
size

::::
TXY: ::::

Txy
::::::::::
separation

:::::
time

:::
of

::
X

:::::
and

::
Y

:::
TD: ::

Td
:::
age

:::
of

::::::::::
Denisovan

::::::
fossil

:::
TA: ::

Ta
:::
age

:::
of

:::::
Altai

:::::::::::::
Neanderthal

:::::
fossil

:::
TV : ::

Tv
:::
age

:::
of

::::::::
Vindija

::::::::::::
Neanderthal

::::::
fossil

:::
Tα ::::

TmN
::
α

::::::::::
admixture

:::::
time

:::
Tβ ::::

TmS
::
β

::::::::::
admixture

:::::
time

:::
Tγ :::::

TmXY
:
γ
:::::::::::
admixture

:::::
time

::
Tδ: ::::::

TmSND
:
δ
:::::::::::
admixture

:::::
time

:::::
2NN0: :::::::

twoNav
::::
size

::
of

::::::
early

::::::::::::
Neanderthal

:::::::::::
population

:::::
2NN1: ::::::

twoNn
::::
size

::
of

::::
late

:::::::::::::
Neanderthal

:::::::::::
population

::::::
2NND: :::::::

twoNnd
::::
size

::
of

:::::::::::
population

:::::
ND

::::::
2NXY : :::::::

twoNxy
::::
size

::
of

:::::::::::
population

:::::
XY

:::::::::
2NXYND: :::::::::

twoNxynd
::::
size

::
of

:::::::::::
population

::::::::
XYND

::::
2NS: ::::::

twoNs
::::
size

::
of

:::::::::::
population

::
S

:::
mα: ::

mN
::
α

::::::::::
admixture

::::::::
fraction

:::
mβ: ::

mS
::
β

::::::::::
admixture

::::::::
fraction

:::
mγ: ::::

mXY
:
γ
:::::::::::
admixture

::::::::
fraction

:::
mδ: :::::

mSND
:
δ
:::::::::::
admixture

::::::::
fraction

4

Table S2:
::::::::::
Parameter

::::::::::
estimates

:::::
and

:::::::::::
confidence

:::::::::
intervals

::::::
using

:::::
real

:::::
data

:::::
and

:::::
both

::::::::::::
algorithms.

:::::::
Results

:::
for

::::::::::
stochastic

::::::::::
algorithm

::::
are

:::::
from

:::::::::::::::::
Rogers et al. [4].

::::::::::
Parameter

:
Deterministic Stochastic

:::::::::
Estimate

::::
95%

:::::
C.I.

:::::::::
Estimate

::::
95%

::::
C.I.

::::
mα: ::::

0.019
::::::
(0.017,

:::::::
0.021)

: ::::
0.019

:::::::
(0.018,

::::::
0.021)

:::
mβ ::::

0.023
::::::
(0.021,

:::::::
0.030)

: ::::
0.021

:::::::
(0.017,

::::::
0.027)

:::
mγ ::::

0.009
::::::
(0.008,

:::::::
0.013)

: ::::
0.016

:::::::
(0.013,

::::::
0.025)

:::
mδ ::::

0.035
::::::
(0.034,

:::::::
0.052)

: ::::
0.034

:::::::
(0.022,

::::::
0.043)

:::
TD ::::

3485
:::::
(3394,

::::::
3729)

: ::::
3480

::::::
(3242,

::::::
3665)

:::
TV ::::

2471
:::::
(2357,

::::::
2628)

: ::::
2506

::::::
(2317,

::::::
2656)

:::
TA ::::

5295
:::::
(5208,

::::::
5452)

: ::::
5310

::::::
(5078,

::::::
5415)

::::
TN0: :::::

10644
:::::::
(10656,

:::::::
12535)

:::::
15706

:::::::
(14594,

:::::::
16956)

::::
TND: :::::

25135
:::::::
(25055,

:::::::
25619)

:::::
25400

:::::::
(25135,

:::::::
25526)

::::
TXY: :::

323
::::
(62,

:::::
506)

::::
1262

:::::
(548,

::::::
2611)

:::::::::
TXYNDS :::::

78036
:::::::
(69103,

:::::::
77977)

:::::
79334

:::::::
(71901,

:::::::
89765)

:

:::::
2NN1 ::::

5509
:::::
(5532,

::::::
6278)

: ::::
6745

::::::
(6444,

::::::
6994)

:::::
2NN0 :::::

15915
:::::::
(15192,

:::::::
18389)

:::::
31411

:::::::
(24767,

:::::::
41586)

::::::
2NND: ::::

1618
:::::
(597,

::::::
1756)

: ::::
1081

:::::
(797,

::::::
1680)

::::::
2NXY : :::::

58955
:::::::
(58716,

:::::::
60979)

:::::
55818

:::::::
(51085,

:::::::
58416)

:::::::::
2NXYND :::::

40500
:::::::
(40214,

:::::::
41453)

:::::
40831

:::::::
(39917,

:::::::
41264)

::::
2NS: :::::::

1465235
::::::::
(557565,

:::::::::
2336867)

:::::
53995

:::::::
(40181,

::::::::
104336)

do_simulation = False

for arg in sys.argv[1:]:

if arg == "-r" or arg == "--run":

do_simulation = True

else:

usage()

time parameters in generations

Txynd = 25920

Tnd = 15000

Txy = 3788

Td = 1734 # age of Denisova fossil

Ta = 1760 # age of Altai fossil

Talpha = 1897 # time of Neanderthal admixture

Tepsilon = Td-1 # time of Denisovan admixture

population sizes

Nxynd = 64964.1/2.0 # ancestral population

Nxy = 44869.2/2.0

Nnd = 5000/2.0

Nn = 9756.8/2.0

Nd = 5000/2.0

Nx = 20000/2.0 # modern Africa

5

Ny = 20000/2.0 # modern Europe

admixture

mAlpha = 0.05

mEpsilon = 0.025

nchromosomes = 1000 # number of chromosomes

basepairs = 2e6 # number of nucleotides per chromosome

u_per_site = 1.4e-8 # mutation

Recombination rate. recomb is the probability of recombination

between sites at opposite ends of the simulated sequence.

c = 1e-8 # rate per base pair per generation

One haploid sample from each of 4 populations: two modern (X,Y),

and two archaic (N,D).

samples = [

msprime.Sample(population=0, time=0), # population X

msprime.Sample(population=1, time=0), # population Y

msprime.Sample(population=2, time=Ta), # population N

msprime.Sample(population=3, time=Td) # population D

]

lbl = ("x", "y", "n", "d")

npops = len(lbl)

associate sample sizes with population labels

sampsize = {}

for s in lbl:

sampsize[s] = 0

for samp in samples:

ndx = samp.population

assert ndx < len(lbl)

assert lbl[ndx] in sampsize

sampsize[lbl[ndx]] = 1

for s in lbl:

if not (sampsize[s] > 0):

print("Population %s has no samples" % s, file=sys.stderr)

sys.exit(1)

Population configurations. No sample sizes are listed here, because

those are specified above in "samples".

popconf = [

msprime.PopulationConfiguration(initial_size=Nx),

msprime.PopulationConfiguration(initial_size=Ny),

msprime.PopulationConfiguration(initial_size=Nn),

6

msprime.PopulationConfiguration(initial_size=Nd)

]

events = [

msprime.MassMigration(

time=Tepsilon,

source=1,

dest=3,

proportion=mEpsilon), # D->Y gene flow

msprime.MassMigration(

time=Talpha,

source=1,

dest=2,

proportion=mAlpha), # N->Y gene flow

msprime.MassMigration(

time=Txy,

source=1,

dest=0,

proportion=1.0), # X-Y split

msprime.PopulationParametersChange(

time=Txy,

initial_size=Nxy,

population_id=0),

msprime.MassMigration(

time=Tnd,

source=3,

dest=2,

proportion=1.0), # N-D split

msprime.PopulationParametersChange(

time=Tnd,

initial_size=Nnd,

population_id=2),

msprime.MassMigration(

time=Txynd,

source=2,

dest=0,

proportion=1.0), # XY-ND split

msprime.PopulationParametersChange(

time=Txynd,

initial_size=Nxynd,

population_id=0)

]

if do_simulation:

run simulation

seed = int(time.time()) ^ os.getpid()

sim = msprime.simulate(samples = samples,

population_configurations = popconf,

7

demographic_events = events,

length = basepairs,

recombination_rate = c,

mutation_rate = u_per_site,

num_replicates = nchromosomes,

random_seed = seed)

header

print("npops = %d" % len(lbl))

print("%s %s" % ("pop", "sampsize"))

for s in lbl:

print("%s %d" % (s, sampsize[s]))

for i, chromosome in enumerate(sim):

for variant in chromosome.variants():

print(i, end=" ")

for g in variant.genotypes:

print(g, end=" ")

print()

else:

Run demography debugger and quit

dd = msprime.DemographyDebugger(

population_configurations=popconf,

demographic_events=events)

dd.print_history()

print("Use \"./sim -r\" to run simulation")

SB Data analysis
::::::::::::
Analysis

::::
of

:::::::::::::::
simulated

:::::::
data

:
using the determin-

istic algorithm

SB.1
::::::::
Model

:::
of

::::::::::
history:

::::::
a.lgo

Model: ((X,Y), (N,D)), migration: N -> Y, D -> Y

This file is like true.lgo but the free parameter values have been

arbitrarily moved to incorrect values so that legofit will have some

work to do.

time fixed zero = 0

twoN fixed one = 1

time fixed Txynd = 25920 # \citet[table~S12.2, p.~90]{Li:N-505-43-S88}

time free Tnd = 20000

time free Txy = 2500

time fixed Talpha = 1897 # \citep[table~2]{Sankararaman:PLO-8-e1002947}

time fixed Tepsilon = 1 # arbitrary

time free Td = 1200

time free Ta = 1100

8

twoN free twoNnd = 800

twoN free twoNn = 1000

twoN free twoNd = 1000

twoN free twoNxy = 20000

twoN free twoNxynd = 20000

mixFrac free mAlpha = 0.01

mixFrac free mEpsilon = 0.01

segment x t=zero twoN=one samples=1

segment y t=zero twoN=one samples=1

segment n t=Ta twoN=twoNn samples=1

segment n2 t=Talpha twoN=twoNn

segment d0 t=Tepsilon twoN=one

segment d t=Td twoN=twoNd samples=1

segment y1 t=Tepsilon twoN=one

segment y2 t=Talpha twoN=one

segment nd t=Tnd twoN=twoNnd

segment xy t=Txy twoN=twoNxy

segment xynd t=Txynd twoN=twoNxynd

mix y from y1 + mEpsilon * d0

mix y1 from y2 + mAlpha * n2

derive x from xy

derive y2 from xy

derive n from n2

derive n2 from nd

derive d0 from d

derive d from nd

derive xy from xynd

derive nd from xynd

SB.2 Deterministic a1.slr

#!/bin/bash

#SBATCH -J a1

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np

#SBATCH --time=0:10:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -o a1-%a.legofit # stdout

#SBATCH -e a1-%a.err # stderr

i=${SLURM_ARRAY_TASK_ID}

ifile=‘printf "../sim/sim%d.opf" $i‘ # input file

stateout=‘printf "a1-%d.state" $i‘

time legofit -1 -d 0 --stateOut ${stateout} --tol 3e-6 -S 5000 a.lgo ${ifile}

9

SB.3 Deterministic a2.slr

#!/bin/bash

#SBATCH -J a2

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np

#SBATCH --time=0:10:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -o a2-%a.legofit # stdout

#SBATCH -e a2-%a.err # stderr

i=${SLURM_ARRAY_TASK_ID}

ifile=‘printf "../sim/sim%d.opf" $i‘ # input file

time legofit -1 -d 0 --tol 3e-6 -S 5000 a.lgo ${ifile} \

--stateIn a1-0.state \

--stateIn a1-1.state \

--stateIn a1-10.state \

--stateIn a1-11.state \

--stateIn a1-12.state \

--stateIn a1-13.state \

--stateIn a1-14.state \

--stateIn a1-15.state \

--stateIn a1-16.state \

--stateIn a1-17.state \

--stateIn a1-18.state \

--stateIn a1-19.state \

--stateIn a1-2.state \

--stateIn a1-20.state \

--stateIn a1-21.state \

--stateIn a1-22.state \

--stateIn a1-23.state \

--stateIn a1-24.state \

--stateIn a1-25.state \

--stateIn a1-26.state \

--stateIn a1-27.state \

--stateIn a1-28.state \

--stateIn a1-29.state \

--stateIn a1-3.state \

--stateIn a1-30.state \

--stateIn a1-31.state \

--stateIn a1-32.state \

--stateIn a1-33.state \

--stateIn a1-34.state \

--stateIn a1-35.state \

--stateIn a1-36.state \

--stateIn a1-37.state \

10

--stateIn a1-38.state \

--stateIn a1-39.state \

--stateIn a1-4.state \

--stateIn a1-40.state \

--stateIn a1-41.state \

--stateIn a1-42.state \

--stateIn a1-43.state \

--stateIn a1-44.state \

--stateIn a1-45.state \

--stateIn a1-46.state \

--stateIn a1-47.state \

--stateIn a1-48.state \

--stateIn a1-49.state \

--stateIn a1-5.state \

--stateIn a1-6.state \

--stateIn a1-7.state \

--stateIn a1-8.state \

--stateIn a1-9.state

SB.4 pclgo.slr

#!/bin/bash

#SBATCH -J pclgo

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np

#SBATCH --time=00:10:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -e pclgo.err # stderr

Make b.lgo.

cmd="(grep ^# a.lgo;"

cmd+=" pclgo a.lgo a2-*.legofit;"

cmd+=" grep -v ^# a.lgo | egrep -v \"\<free\>\")"

echo "# "$cmd > b.lgo

eval $cmd >> b.lgo

SB.5 Deterministic b1.slr

#!/bin/bash

#SBATCH -J b1

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np

#SBATCH --time=0:10:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -o b1-%a.legofit # stdout

#SBATCH -e b1-%a.err # stderr

11

i=${SLURM_ARRAY_TASK_ID}

ifile=‘printf "../sim/sim%d.opf" $i‘ # input file

stateout=‘printf "b1-%d.state" $i‘

time legofit -1 -d 0 --stateOut ${stateout} --tol 3e-6 -S 5000 b.lgo ${ifile}

SB.6 Deterministic b2.slr

#!/bin/bash

#SBATCH -J b2

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np

#SBATCH --time=0:10:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -o b2-%a.legofit # stdout

#SBATCH -e b2-%a.err # stderr

i=${SLURM_ARRAY_TASK_ID}

ifile=‘printf "../sim/sim%d.opf" $i‘ # input file

time legofit -1 -d 0 --tol 3e-6 -S 5000 b.lgo ${ifile} \

--stateIn b1-0.state \

--stateIn b1-1.state \

--stateIn b1-10.state \

--stateIn b1-11.state \

--stateIn b1-12.state \

--stateIn b1-13.state \

--stateIn b1-14.state \

--stateIn b1-15.state \

--stateIn b1-16.state \

--stateIn b1-17.state \

--stateIn b1-18.state \

--stateIn b1-19.state \

--stateIn b1-2.state \

--stateIn b1-20.state \

--stateIn b1-21.state \

--stateIn b1-22.state \

--stateIn b1-23.state \

--stateIn b1-24.state \

--stateIn b1-25.state \

--stateIn b1-26.state \

--stateIn b1-27.state \

--stateIn b1-28.state \

--stateIn b1-29.state \

--stateIn b1-3.state \

--stateIn b1-30.state \

12

--stateIn b1-31.state \

--stateIn b1-32.state \

--stateIn b1-33.state \

--stateIn b1-34.state \

--stateIn b1-35.state \

--stateIn b1-36.state \

--stateIn b1-37.state \

--stateIn b1-38.state \

--stateIn b1-39.state \

--stateIn b1-4.state \

--stateIn b1-40.state \

--stateIn b1-41.state \

--stateIn b1-42.state \

--stateIn b1-43.state \

--stateIn b1-44.state \

--stateIn b1-45.state \

--stateIn b1-46.state \

--stateIn b1-47.state \

--stateIn b1-48.state \

--stateIn b1-49.state \

--stateIn b1-5.state \

--stateIn b1-6.state \

--stateIn b1-7.state \

--stateIn b1-8.state \

--stateIn b1-9.state

SC
::::::::::::
Analysis

::::
of

::::::
real

::::::::
data

::::::::
using

::::::
the

:::::::::::::::::::
deterministic

:::::::::::::::
algorithm

SC.1
::::::::
Model

:::::::
αβγδ:

:::::::
a.lgo

:::::::
input

::::
file

Gene flow: N->Y, S->D, XY->N, S->ND

S = superarchaic; XY = early modern; ND = Neandersovan; Y = Europe;

A, Altai; V=Vindija; D=Denisovan. Altai and Vindija on same branch

TmN < Tv < Ta

time fixed zero = 0

twoN fixed one = 1

time fixed TmN = 1 # no coalesc. events can happen b/t 0 and Tv

time fixed Txynd = 25920 # \citet[table~S12.2, p.~90]{Li:N-505-43-S88}

time free Txynds = 60000 # arbitrary: 1.74 myr

time free Tnd = 24000

time free Tav = 14000

time free Txy = 10000

time free Td = 2500

time free Ta = 4000

time free Tv = 1000

twoN free twoNav = 2000

twoN free twoNn = 2000

twoN free twoNnd = 2000

13

twoN free twoNxy = 20000

twoN free twoNxynd = 20000

twoN free twoNs = 2000

mixFrac free mN = 0.01

mixFrac free mS = 0.01

mixFrac free mSND = 0.01

mixFrac free mXY = 0.01

time constrained TmXY = 0.5*(Txy + Tav)

time constrained TmS = 0.5*(Td + Tnd)

time constrained TmSND = 0.5*(Tnd + Txynd)

segment x t=zero twoN=one samples=1

segment y t=zero twoN=one samples=1

segment v t=Tv twoN=twoNn samples=1

segment a t=Ta twoN=twoNn samples=1

segment a2 t=TmXY twoN=twoNn

segment d t=Td twoN=one samples=1

segment d2 t=TmS twoN=one

segment y2 t=TmN twoN=one

segment n t=TmN twoN=twoNn

segment s t=TmS twoN=twoNs

segment s2 t=TmSND twoN=twoNs

segment av t=Tav twoN=twoNav

segment nd t=Tnd twoN=twoNnd

segment nd2 t=TmSND twoN=twoNnd

segment xy t=Txy twoN=twoNxy

segment xy2 t=TmXY twoN=twoNxy

segment xynd t=Txynd twoN=twoNxynd

segment xynds t=Txynds twoN=twoNxynd

mix d from d2 + mS * s

mix y from y2 + mN * n

mix a from a2 + mXY * xy2

mix nd from nd2 + mSND * s2

derive n from v

derive v from a

derive a2 from av

derive av from nd

derive d2 from nd

derive x from xy

derive y2 from xy

derive xy from xy2

derive xy2 from xynd

derive nd2 from xynd

derive s from s2

derive s2 from xynds

derive xynd from xynds

14

SC.2
::::::::::::
a1boot.slr

#!/bin/bash

#SBATCH -J ABCDa1boot

#SBATCH --account=rogersa-kp

#SBATCH --partition=rogersa-kp

#SBATCH --time=36:00:00

#SBATCH --nodes 1

#SBATCH --ntasks 1

#SBATCH -o a1boot%a.legofit # stdout

#SBATCH -e a1boot%a.err # stderr

i=${SLURM_ARRAY_TASK_ID}

ifile=$(printf "../boot/boot%d.opf" $i) # input file

stateout=$(printf "a1boot%d.state" $i)

lgofile=a.lgo

time legofit -1 -d 0 --stateOut $stateout --tol 3e-6 -S 5000 $lgofile $ifile

References

[1] Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS Computational Biology, 12(5):1–22, 5 2016.

[2] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer Science and Business Media, Berlin, 2006.

[3] Alan R. Rogers. Legofit: Estimating population history from genetic data. BMC Bioinformatics,
20:526, 2019.

[4] Alan R. Rogers, Nathan S. Harris, and Alan A. Achenbach. Neanderthal-Denisovan ancestors
interbred with a distantly-related hominin. Science Advances, 6(8):eaay5483, 2020.

15

