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Abstract

Motivation: Comparing trees is a basic task for many purposes, and es-
pecially in phylogeny where different tree reconstruction tools may lead to
different trees, likely representing contradictory evolutionary information.
While a large variety of pairwise measures of similarity or dissimilarity
have been developed for comparing trees with no information on internal
nodes, very few address the case of inner node-labeled trees. Yet such trees
are common; for instance reconciled gene trees have inner nodes labeled
with the type of event giving rise to them, typically speciation or duplica-
tion. Recently, we proposed a formulation of the Labeled Robinson Foulds
edit distance with edge extensions, edge contractions between identically la-
beled nodes, and node label flips. However, this distance proved difficult to
compute, in particular because shortest edit paths can require contracting
“good” edges, i.e. edges present in the two trees.

Results: Here, we report on a different formulation of the Labeled Robinson
Foulds edit distance — based on node insertion, deletion and label substitu-
tion — which we show can be computed in linear time. The new formulation
also maintains other desirable properties: being a metric, reducing to Robin-
son Foulds for unlabeled trees and maintaining an intuitive interpretation.
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The new distance is computable for an arbitrary number of label types, thus
making it useful for applications involving not only speciations and duplica-
tions, but also horizontal gene transfers and further events associated with
the internal nodes of the tree. To illustrate the utility of the new distance,
we use it to study the impact of taxon sampling on labeled gene tree infer-
ence, and conclude that denser taxon sampling yields better trees.

Availibility and implementation: The software written in Python is
available in the pylabeledrf repository at https://github.com/DessimozLab/
pylabeledrf.

1 Introduction

Gene trees are extensively used, not only for inferring phylogenetic relation-
ships between corresponding taxa, but also for inferring the most plausible
scenario of evolutionary events leading to the observed gene family from a
single ancestral gene copy. This has important implications towards eluci-
dating the functional relationship between gene copies. For this purpose,
reconciliation methods [reviewed in 4] embed a given gene tree into a known
species tree. This process results in the labeling of the internal nodes of the
gene tree with the type of events which gave rise to them, typically specia-
tions and duplications, but also horizontal gene transfers or possibly other
events (whole genome duplication, gene convergence, etc). For example, in-
formation on duplication and speciation node labeling is provided for the
trees of the Ensembl Compara database [25].

The existence of a variety of different phylogenetic inference methods
leading to different, potentially inconsistent, trees for the same dataset,
brings forward the need for appropriate tools for comparing them. Although
comparing labeled gene trees remains a largely unexplored field, a large va-
riety of pairwise measures of similarity or dissimilarity have been developed
for comparing unlabeled evolutionary trees. Among them are the meth-
ods based on counting the structural differences between the two trees in
terms of path size, bipartitions or quartets for unrooted trees, clades or
triplets for rooted trees [6, 10, 7], or those based on minimizing a number
of rearrangements that disconnect and reconnect subpieces of a tree, such
as nearest neighbour interchange (NNI), subtree-pruning-regrafting (SPR)
or Tree-Bisection-Reconnection (TBR) moves [2, 11, 13]. While the latter
methods are NP-hard [15], the former are typically computable in polyno-
mial time. In particular, the Robinson-Foulds (RF ) distance, defined in
terms of bipartition dissimilarity for unrooted trees, and clade dissimilar-
ity for rooted trees [16], can be computed in linear [9], and even sublinear
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time [20].
On the other hand, metrics have also been developed for node-labeled

trees (rooted, and sometimes with an order on nodes) arising from many
different applications in various fields (parsing, RNA structure comparison,
computer vision, genealogical studies, etc), where node labels in a given
tree are pairwise different (i.e. no repeated labels). For such trees, the
standard Tree Edit Distance (TED) [29], defined in terms of a minimum cost
path of node deletion, node insertion and node change (label substitution)
transforming one tree to another, has been widely used. While the general
version of the problem on unordered labeled trees with a non-constant cost
function on edit operations is NP-complete [30], most variants are solvable
in polynomial time [27, 28, 23].

The metric we developed in [5], referred to as ELRF , is the first effort
towards comparing labeled gene trees, expressed in terms of trees with a
binary node labeling (typically speciation and duplication). ELRF is an
extension of the RF distance, one of the most widely used tree distance,
not only in phylogenetics, but also in other fields such as in linguistics,
for its computational efficiency, intuitive interpretation and the fact that
it is a true metric. Improved versions of the RF distance have also been
developed [15, 17] to address the distance’s drawbacks, which are lack of
robustness (a small change in a tree may cause a disproportional change
in the distance) and skewed distribution. Classically defined in terms of
bipartition or clade dissimilarity, the RF distance can similarly be defined
in terms of edit operations on tree edges: the minimum number of edge
contraction and extension needed to transform one tree into the other [22].
In [5], this definition of the RF distance was extended to trees with binary
node labeling by including a node flip operation, alongside edge contractions
and extensions. While remaining a metric, ELRF turned out to be much
more challenging to compute. As a result, only a heuristic could be proposed
to compute it.

In this paper, we explore a different extension of RF to node-labeled
trees with labels belonging to a set of label types, directly derived from
TED [29], which is a reformulation of the RF distance in terms of edit
operations on tree nodes rather than on tree edges. We show that this new
distance is computable in linear time for an arbitrary number of label types,
thus making it useful for applications involving not only speciations and
duplications, but also horizontal gene transfers and further events associated
with the internal nodes of the tree. We show that the new distance compares
favourably to RF and ELRF by performing simulations on labeled gene
trees of 182 leaves. Finally, we use our new distance in the purpose of
measuring the impact of taxon sampling on labeled gene tree inference, and
conclude that denser taxon sampling yields better predictions.
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2 Notation and Concepts

The Robinson-Foulds (RF) distance is defined in the literature for rooted
and unrooted trees. Moreover, as mentioned in [5], the problem of computing
the RF distance for two rooted trees can be reduced to computing the RF
distance for the two corresponding unrooted trees obtained by grafting an
edge linking the root to a dummy leaf. Therefore, in this paper we restrict
ourselves to unrooted trees. We begin by introducing few required notations.

Let T be a tree with node set V (T ) and edge set E(T ). Given a node
x of T , the degree of x is the number of edges incident to x. In this paper,
the considered trees are unrooted with all internal nodes being of degree at
least 3. An internal node of degree 3 is said to be binary .

We denote by L(T ) ⊆ V (T ) the set of leaves of T , i.e. the set of nodes
of T of degree one. In particular, given a set L (let us say taxa or genetic
elements), a tree T on L is a tree with leafset L(T ) = L.

A node of V (T ) \ L(T ) is called an internal node. A tree with a single
internal node x is called a star tree, and x is called a star node. An edge
connecting two internal nodes is called an internal edge; otherwise, it is a
terminal edge. Moreover, a rooted tree admits a single internal node r(T )
considered as the root.

We call N(x) = {y : {x, y} ∈ E(T )} the set of neighbours of an internal
node x of T .

A subtree S of T is a tree such that V (S) ⊆ V (T ), E(S) ⊆ E(T ) and
any edge of E(S) connects two nodes of V (S).

The bipartition of an unrooted tree T corresponding to an edge e = {x, y}
is the unordered pair of clades L(Tx) and L(Ty) where Tx and Ty are the
two subtrees rooted respectively at x and y obtained by removing e from
T . We denote by B(T ) the set of non-trivial bipartitions of T , i.e. those
corresponding to internal edges of T .

2.1 The Robinson-Foulds distance

Given two unrooted trees T and T ′ on the leafset L, the Robinson-Foulds
(RF ) distance between T and T ′ is the size of the symmetric difference
between the bipartitions of the two trees. More precisely,

RF (T, T ′) = |B(T ) \ B(T ′)|+ |B(T ′) \ B(T )|

The RF distance is equivalently defined in terms of an edit distance
on edges. However, as for node-labeled trees an additional substitution
operation on node labels will be required, for the sake of standardization,
we reformulate the edit operations to operate on nodes rather than on edges.
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Definition 1 (node edit operations). Two edit operations on the nodes of
a tree T are defined as follows:

• Node deletion: Let x be an internal node of T which is not a star
node and y be a neighbour of x which is not a leaf. Deleting x with
respect to y means making the neighbours of x become the neighbours
of y. More precisely, Del(T, x, y) is an operation transforming the tree
T into the tree T ′ obtained from T by removing the edge {x, z} for each
z ∈ N(x), creating the edge {y, z} for each z ∈ N(x) \ {y}, and then
removing node x.

• Node insertion: Let y be an internal node of V (T ) of degree at least
3. Inserting x as a neighbour of y entails making x the neighbour of a
subset Z ( N(y) such that |Z| ≥ 2. More precisely, Ins(T, x, y, Z) is
an operation transforming the tree T into the tree T ′ obtained from T
by removing the edges {y, zi}, for all zi ∈ Z, creating a node x and a
new edge e = {x, y}, and creating new edges {x, zi}, for all zi ∈ Z.

Notice the one-to-one correspondence between operations on nodes and
operations on edges. In fact, deleting a node x by an operation Del(T, x, y)
results in removing the edge {x, y}, while inserting a node x by an operation
Ins(T, x, y, Z) results in inserting the edge {x, y}. Here, we define the RF
distance in terms of edit operations on nodes. Formally, let T and T ′ be
two trees on the same leafset L. The Robinson-Foulds or Edit distance [22]
RF (T, T ′) between T and T ′ is the size of a shortest path of edge edit
operations (i.e. edge extensions and edge contractions) transforming T into
T ′. This distance measure, equivalently defined as the size of the symmetric
difference between the non-trivial bipartitions of the two trees, has been
shown to be a metric.

Call a bad edge of T with respect to T ′ (or similarly of T ′ with respect to
T ; if there is no ambiguity, we will omit the “with respect to” precision) an
edge representing bipartitions which are not shared by the two trees, i.e. an
edge of T (respec. T ′) defining a bipartition of B(T ) (respec. B(T ′)) which
is not in B(T ′) (respec. in B(T )). An edge which is not bad is said to be
good . Terminal edges are always good.

3 Generalizing the Robinson-Foulds distance to
Labeled Trees

A tree T is labeled if and only if each internal node x of T has a label
λ(x) ∈ Λ, Λ being a finite set of labels. For gene trees, labels usually repre-
sent the type of event leading to the bifurcation, typically duplications and
speciations, although other events, such as horizontal gene transfers, may be
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considered. The metric defined in this paper holds for an arbitrary number
of labels. We generalize the RF distance to labeled trees by generalizing the
edit operations defined above. This is simply done by introducing a third
operation for node labels editing.

Definition 2 (Labeled node edit operations). Three edit operations on in-
ternal nodes of a labeled tree T are defined as follows:

• Node deletion: Del(T, x, y) is an operation deleting an internal node
x of T with respect to a neighbour y of x which is not a leaf, defined
as in Definition 1.

• Node insertion: Ins(T, x, y, Z, λ) is an operation inserting an inter-
nal node x as a new neighbour of a non-binary node y, and moving
Z ( N(y) such that |Z| ≥ 2, to be the neighbours of x, as defined in
Definition 1. In addition, the inserted node x receives a label λ ∈ Λ.

• Node label substitution: Sub(T, x, λ) is an operation substituting
the label of the internal node x of T with λ ∈ Λ.

These operations are illustrated in Figure 1.
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Figure 1: The transformation of a tree T into a tree T ′ depicting the three
edit operations on nodes. From top to bottom: node label substitution
(leading to the red label), node deletion (the parent of D and E) and node
insertion (the parent of D and C).

Let TL be the set of unrooted and labeled trees on the leafset L. For two
trees T , T ′ of TL, we call the Labeled Robinson Foulds distance between T
and T ′ and denote by LRF (T, T ′) the size of a shortest path of labeled node
edit operations transforming T into T ′ (or vice versa). The two following
lemmas state that, similarly to RF , LRF is a true metric. Moreover, LRF
is exactly RF for unlabeled trees (or similarly labeled with a single label).

In the following, the unlabeled version of a tree T ∈ TL is simply T
ignoring its node labels.
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Lemma 1. The function LRF (T, T ′) assigning to each pair (T, T ′) ∈ T 2
L

the size of a shortest path of node edit operations transforming T into T ′

defines a distance on TL.

Proof. The non-negative, identity and triangular inequality conditions are
obvious. For the symmetric condition, notice that we can reverse every edit
operation in a path from T to T ′ to obtain a path from T ′ to T with the same
number of events, and vice versa (insertions and deletions are symmetrical
operations, and any substitution can be reversed by a substitution). We
thus have LRF (T ′, T ) ≤ LRF (T, T ′) and LRF (T, T ′) ≤ LRF (T ′, T ), and
equality follows.

The next lemma directly follows from the fact that node substitutions
are never applied in case of a label set restricted to a single label.

Lemma 2. If Λ is restricted to a single label, then for each pair (T, T ′) ∈
T 2
L , LRF (T, T ′) = RF (T, T ′).

A previous extension of RF to labeled trees, based on edit operations
on edges rather than on nodes, was introduced in [5]. This distance, which
we call ELRF , was defined on three operations:

• Edge extension Ext(T, x,X) creating an edge {x, y} and defined as a
node insertion Ins(T, y, x,X, λ(x)) inserting a node y as a neighbour
of x and assigning to y the label of x;

• Edge contraction Cont(T, {x, y}) is equal to a node deletionDel(T, y, x)
deleting y, but contrary to LRF, requires that λ(x) = λ(y);

• Node flip Flip(T, x, λ) assigning the label λ to x.

Given two labeled trees T and T ′ of TL, ELRF (T, T ′) is the size of the
shortest path of edge extension, edge contraction and label flip required to
transform T to T ′.

The following lemma makes the link between LRF and ELRF .

Lemma 3. For any pair (T, T ′) ∈ T 2
L ,

LRF (T, T ′) ≤ ELRF (T, T ′)

Proof. Let P be a path of edge edit operations and label flip transforming T
into T ′ such that |P| = ELRF (T, T ′). Then the sequence P ′ obtained from
P by replacing each edge extension by the corresponding node insertion,
each edge contraction by the corresponding node deletion and each node
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flip by the corresponding node substitution is clearly a path of node edit
operations of size |P ′| = |P| = ELRF (T, T ′) transforming T into T ′. And
thus LRF (T, T ′) ≤ ELRF (T, T ′). Figure 2 depicts an example were the
inequality is strict.

The rest of this paper is dedicated to computing the edit distance LRF (T, T ′)
for any pair (T, T ′) of trees of TL.
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Figure 2: The transformation of a tree T1 into a tree T2 (respect. T3) depict-
ing where the equality (respect. the inequality) is strict between LRF (T1, T2)
and ELRF (T1, T2) (respect. LRF (T1, T3) and ELRF (T1, T3)).

3.1 Reduction to Islands

In this section, we define a subdivision of the two trees into pairs of maximum
subtrees that can be treated separately.

While a good edge e in T has a corresponding good edge e′ in T ′ (the one
defining the same bipartition), a bad edge in T has no corresponding edge
in T ′. However, these bad edges may be grouped into pairs of corresponding
islands (called maximum bad subtrees in [5]), as defined bellow.

Definition 3 (Islands). An island of T is a maximum subtree I (i.e. a
subtree with a maximum number of edges) such that no internal edge of I is
a good edge of T , and all terminal edges of I are good edges of T . The size
of I, denoted ε(I), is its number of internal edges.

In other words, an island of T is a maximum subtree with all internal
edges (if any) being bad edges of T , and all terminal edges being good edges
of T . Notice that an island I of T may have no internal edge at all, i.e.
it may be restricted to a star tree (if ε(I) = 0). Notice also that each bad
edge of T belongs to a single island, while each good edge belongs to exactly
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two islands of T if it is an internal edge of T , or to a single island if it is a
terminal edge of T .
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IJT’
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Figure 3: Two trees T and T ′ on TL for L = {A,B,C,D,E, F, I, J},
with a binary labeling of internal nodes (squares and circles). Dotted
lines represent good internal edges, solid lines represent bad edges and
thin lines represent terminal edges (which are good edges). This repre-
sentation highlights the subdivision of the two trees into the island pairs
I(T,T ′) = {(I1, I ′1), (I2, I ′2), (I3, I ′3), (I4, I ′4)}.Notice that each dotted line is a
terminal edge of its two adjacent islands

Finally, the following lemma (lemma 3 from [5]) shows that there is a
one-to-one correspondence between the islands of T and those of T ′.

Lemma 4. Let I be an island of T with the set {ei}1≤i≤k of terminal edges,
and let {e′i}1≤i≤k be the corresponding set of edges in T ′. Then the subtree
I ′ of T ′, containing all e′i edges as terminal edges, is unique. Moreover, it
is an island of T ′.

Proof. As ∪iYi = L, {e′i}1≤i≤k are the only terminal edges of any subtree I ′

of T ′ containing the set {e′i}1≤i≤k as terminal edges. As T ′ is a tree, for any
1 ≤ i 6= j ≤ k, there is only one possible path from x′i to x′j . Uniqueness
follows.
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Suppose that such a subtree I ′ is not an island. Then it contains an
internal good edge e′ = (x′, y′). In other words, there is a non-trivial bipar-
tition of {Yi}1≤i≤k which is also a bipartition in I. This contradicts the fact
that I is an island of T . Finally, as all terminal edges of I ′ are good edges
of T ′, it follows that I ′ is an island of T ′.

For any island I of T , let I ′ be the corresponding island of T ′. We call
(I, I ′) an island pair of (T, T ′). See Figure 3 for an example.

Now, let I(T,T ′) = {(I1, I ′1), (I2, I ′2), · · · , (In, I ′n)} be the set of island
pairs of (T, T ′). For 1 ≤ i ≤ n, let Pi be a shortest path of labeled node edit
operations transforming Ii into I ′i. Then the path P obtained by perform-
ing consecutively P1,P2, · · · ,Pn (that we represent later as P1.P2. · · · .Pn)
clearly transforms T into T ′. Therefore we have

LRF (T, T ′) ≤
n∑

i=1

LRF (Ii, I
′
i)

As described in [5], one major issue with ELRF is that good edge con-
tractions may not be avoided in a shortest path of edit operations trans-
forming T into T ′, resulting in island merging. In other words, treating
island pairs separately may not result in an optimal scenario of edit opera-
tions under ELRF , preventing the above inequality from being an equality.
Interestingly, the equality holds for the LRF distance, as we show in the
next section.

3.2 Computing the LRF distance on islands

We require an additional definition. Two trees I and I ′ of an island pair are
said to share a common label l ∈ Λ if there exist x ∈ V (I) and x′ ∈ V (I ′)
such that λ(x) = λ(x′) = l. If I and I ′ do not share any common label, then
(I, I ′) is called a label-disjoint island pair. For example, the pair (I3, I

′
3) in

Figure 3 or the pair (I, I ′) in Figure 4 are label-disjoint.
Now let (I, I ′) be an island pair. Transforming I into I ′ can be done by

reducing I into a star tree by performing a sequence of node deletions (if any,
i.e. if I is not already a star tree), and then raising the star tree by inserting
the required nodes to reach I ′. Only the unique node not deleted during the
first step might require a label substitution; for all inserted nodes, the label
can be chosen to match that of I ′. However, if I and I ′ share a common label
l among their internal nodes, then the deletions can be done in a way such
that the surviving node x of I is one with label λ(x) = l, thus avoiding the
need for any substitution. The number of required operations is thus ε(I)
deletions, followed by zero or one substitution, followed by ε(I ′) insertions.
Alternatively, the problem can be seen as one of reducing the two trees
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Figure 4: An optimal sequence of edit operations for the island pair (I, I ′).

into star trees by performing ε(I) + ε(I ′) deletions, in a way reducing the
two islands into two star trees sharing the same label, if possible. Figure 4
depicts an example of such tree editing for a label-disjoint island pair.

The following lemmas show that the sequential way of doing described
above is optimal.

Lemma 5. Let (I, I ′) be an element of I(T,T ′). Then:

• If I and I ′ share a common label, then LRF (I, I ′) = ε(I) + ε(I ′).

• Otherwise LRF (I, I ′) = ε(I) + ε(I ′) + 1.

Proof. The scenario depicted above for transforming I into I ′ clearly re-
quires ε(I) + ε(I ′) node insertions and deletions, and an additional node
label substitution in case I ans I ′ are label-disjoint. We can conclude that
LRF (I, I ′) ≤ ε(I)+ε(I ′) if I and I ′ share a common label and LRF (I, I ′) ≤
ε(I) + ε(I ′) + 1, if I and I ′ are label-disjoint.

On the other hand, as all the edges of I are bad edges, they should be
all removed, before reinserting those of I ′. Now, since an edit operation can
remove or insert at most one edge, and the only operations removing an edge
are node removal or node insertion, we clearly require at least ε(I) + ε(I ′)
node removals and insertions to transform the unlabeled form of the tree
I into the unlabeled form of I ′. Furthermore, as deletions do not affect
star nodes, at least one node in I should survive (i.e. not be affected by a
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node deletion). Thus, if the two trees are label-disjoint, then at least one
node label substitution is required. We can then conclude that LRF (I, I ′) ≥
ε(I)+ε(I ′) if I and I ′ share a common label and LRF (I, I ′) ≥ ε(I)+ε(I ′)+1,
if I and I ′ are label-disjoint, which concludes the proof.

We have obviously LRF (T, T ′) ≤
∑

(I,I′)∈I(T,T ′)
LRF (I, I ′). It remains

to show that the symmetrical inequality also holds, i.e. we cannot do better
by merging islands, and thus pairs of islands can be considered separately.
The following lemma states that we can always find a sequence of operations,
at each step maintaining or increasing the number of islands, i.e. never
merging islands.

For a path P = (o1, o2, · · · op) transforming a tree T into a tree T ′ and
1 ≤ k ≤ p, denote by Tk the tree obtained from T after performing the
sub-sequence of operations Pk = (o1, · · · ok).

Lemma 6. Let T and T ′ be two trees of TL. There is a shortest path
P = (o1, o2, · · · op) of edit operations transforming T into T ′ such that for
each k, 2 ≤ k ≤ p, |I(Tk−1, T

′)| ≤ |I(Tk, T
′)|.

Proof. Let P = (o1, o2, · · · op) be a shortest path transforming T into T ′,
Denote ε(Tk, T

′) =
∑

(I,I′)∈I(Tk,T ′) ε(I) + ε(I ′), and ξ(Tk, T
′) the number of

label-disjoints pairs of I(Tk, T
′).

Assume P contains an operation reducing the number of islands of Ti−1,
and let oi be the last operation of that form, i.e. |I(Ti−1, T

′)| > |I(Ti, T
′)|.

Such an operation can only be a deletion Del(Ti−1, x, y) where e = {x, y} is
a good edge, thus merging the two islands Ix, Iy containing this good edge.

As, by assumption, oi is the last operation merging two islands, at that
point each pair of islands is treated separately, and we deduce from the fact
that P is a shortest path that LRF (Ti, T

′) =
∑

(I,I′)∈I(Ti,T ′) LRF (I, I ′), and

thus LRF (Ti−1, T
′) = 1 +

∑
(I,I′)∈I(Ti,T ′) LRF (I, I ′). Then, from Lemma 5,

LRF (Ti−1, T
′) = 1 + ε(Ti, T

′) + ξ(Ti, T
′).

On the other hand, there is a path from Ti−1 to T ′ of size c(Ti−1, T
′) =

ε(Ti−1, T
′) + ξ(Ti−1, T

′).
As oi is a deletion of a good edge e = {x, y}, it destroys the biparti-

tion defined by this edge in Ti−1, consequently the corresponding edge in T ′

becomes a bad edge. Therefore ε(Ti−1, T
′) = ε(Ti, T

′)− 1.
On the other hand, let δ = ξ(Ti, T

′)− ξ(Ti−1, T ′) be the difference be-
tween the number of label-disjoint pairs of islands after performing the op-
eration oi merging two pairs of islands (I1, I

′
1) and (I2, I

′
2).

• If both pairs (I1, I
′
1) and (I2, I

′
2) share a common label, then the merged

pair also shares a common label, and thus δ = 0;
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• If both pairs (I1, I
′
1) and (I2, I

′
2) are label-disjoint, then after the merg-

ing the resulting pair of islands may or may not share a common label
and thus −2 ≤ δ ≤ −1;

• If only one of the two pairs (I1, I
′
1) and (I2, I

′
2) share a common label,

then after the merging, the resulting pair of islands may or may not
share a common label and thus −1 ≤ δ ≤ 0;

Therefore, in all cases we have ξ(Ti, T
′) ≤ ξ(Ti−1, T ′) ≤ ξ(Ti, T ′) + 2.

Recall c(Ti−1, T
′) = ε(Ti−1, T

′) + ξ(Ti−1, T
′) = ε(Ti, T

′)− 1 + ξ(Ti−1, T
′).

Thus c(Ti−1, T
′) ≤ ε(Ti, T ′)− 1 + ξ(Ti, T

′) + 2 = ε(Ti, T
′) + ξ(Ti, T

′) + 1
= LRF (Ti−1, T

′). As LRF (Ti−1, T
′) is the size of the shortest path from

Ti−1 to T ′, we should have c(Ti−1, T
′) = LRF (Ti−1, T

′).
Therefore, replacing the sequence of operations (oi, · · · op) on Ti−1 by a

sequence of operations solving each pair if islands separately leads to the
same number of operations.

2 Ins on I1

I3

I’4

I3

I3

I’3
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B
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Figure 5: A path P transforming T into T ′ of the form P1.P2.P3.P4, each
Pi being a shortest path for the island pair (Ii, I

′
i). Here |P1| = 6, |P2| = 0,

|P3| = 1, and |P4| = 0.

We are now ready to prove the equality leading to the efficient compu-
tation of the LRF distance of two trees (see Figure 5 for an example).
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Theorem 1. Let I(T,T ′) = {(I1, I ′1), (I2, I ′2), · · · , (In, I ′n)} be the island pairs
of T and T ′. Then

LRF (T, T ′) =

n∑
i=1

LRF (Ii, I
′
i)

Proof. Let P be a shortest path transforming T into T ′ verifying the condi-
tion of Lemma 6, i.e. not involving any removal of good edges. As islands
can only share good edges, and good edges are never removed by any opera-
tion of P, islands are never merged during the process of transforming T into
T ′, and thus can be treated separately. Let Pi, 1 ≤ i ≤ n, be the subpath of
edit operations transforming Ii into I ′i. Each Pi should be a shortest path
from Ii to I ′i as otherwise it can be replaced by a shortest path, contradicting
the fact that P is a shortest path.

The next result directly follows from Lemma 5 and Theorem 1.

Corollary 1. Let I(T,T ′) = {(I1, I ′1), (I2, I ′2), · · · , (In, I ′n)} be the island pairs
of T and T ′ and δ be the number of label-disjoint pairs. Then

LRF (T, T ′) =

n∑
i=1

(ε(Ii) + ε(I ′i)) + δ

4 Algorithm

We present our algorithm for computing the LRF distance (Algorithm 1).
The input is a pair of trees T1, T2 of TL. We show that LRF (T1, T2) can be
computed in time O(n), where n = |L|.

4.1 The LRF () function

We start with the identification of good edges. Lines 1 and 2 of Algorithm 1
retrieve the non-trivial bipartitions for each input tree and Line 3 intersects
the obtained bipartitions of T1 and T2 to generate the set of good edges
shared by the two input trees. This is the same procedure as to compute
the conventional (unlabeled) Robinson-Foulds distance, so we do not detail
it here. It is sufficient to know that it can be done in time O(n) [9].

Next the algorithm identifies and characterises the islands of T1 and T2
(lines 4 and 5). This is performed using an auxiliary function getIslands()
(Algorithm 2), which we describe in detail below. As we shall see, it runs in
O(n).
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Next, we process the matching islands of T1 and T2 by iterating over the
good edges (of which there are O(n)). We retrieve for a good edge the two
islands to which it belongs in T1 (line 8) and in T2 (line 9). This is achieved
in constant time using bipartition-to-island-pair mappings obtained during
the tree traversal of getIslands() below.

For each of the matching island of T1 and T2 (line 10), the algorithm
checks whether the pair has already been visited in a previous iteration of
the loop (the same island pair can be visited from multiple good edges). If
not, the current distance is updated by adding the number of bad edges in
each island. Since these sizes are also pre-computed by getIslands(), this
operation is in constant time as well.

The iteration over all good edges ends with lines 13-14, which account
for a potentially required single substitution between corresponding islands,
in case they have no label in common (i.e. they form a label-disjoint island
pair). These operations can also be performed in constant time, giving an
overall O(n) runtime for the for-loop.

Finally, lines 16-19 are needed to handle the special case where there is
no good edge between T1 and T2. In such a case, there is only one island per
tree, which is matching.

4.2 The getIsland() function

We now detail the auxiliary function getIslands() (Algorithm 2). Recall
that its goal is to identify the islands of an input tree, given a list of good
edges. This is achieved through a single traversal of the tree in pre-order (we
assume that the tree is arbitrarily rooted, and that the dummy root node
has no label). In doing so, we identify the islands, which are separated by
good edges, and keep track of (i) the set of labels found in each island (ar-
ray islLabels); (ii) the number of bad edge in each island (array islSizes;,
(iii) the pair of islands associated with each bipartition (bipart2isl). These
three data structures are initialised in lines 1-3. Note that the initial island
is initialised to -1 because it will be incremented to 0 at the first step of the
traversal.

Lines 4-20 define the recursive function used to traverse the tree. Because
each good edge belongs to exactly two islands (Sect. 3), good edges can be
used to identify the transition between two islands. By contrast, adjacent
bad edges are by definition part of the same island. In our traversal, we thus
check whether a particular node is attached to the previous island by a good
edge (lines 7-15) or a bad edge (lines 16-20). If it is the former, we have just
transitioned to a new island, and thus append new elements to the islLabels
(line 8) and islSizes arrays (line 9).

Furthermore, we update the bipartition-to-island table with references
to the two islands which are deliminated by the good edge. Since by defini-
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tion a good edge induces the same bipartition in T1 and T2, the bipartition
bitmask (a binary vector of the length n with 1 for all leaves present in the
clade attached to the good edge) should either be the same for the good edge
in T1 and T2, or bit-wise complementary if the rooting between T1 and T2 is
on different sides of the good edge (as the tree data structure is arbitrarily
rooted). We store the associated islands using both bitmasks, ensuring that
the island which on same side as the root is listed first (lines 12-13).

If we encounter a node which is attached to the previous island by a
bad edge, then it is still part of it, so we just update the set of leaf of the
previous island (line 17), and increment its size counter by one (line 18).

All operations performed at each internal node are constant time, and
the number of internal nodes is O(n), so the time complexity of the tree
traversal is done in time O(n).

Algorithm 1 LRF(T1, T2)

1: bipartitions1 = getBiparitions(T1)
2: bipartitions2 = getBiparitions(T2)
3: goodEdges = bipartitions1 ∩ bipartitions2
4: islLabels1, islSizes1, bipart2isl1 = getIslands(T1, goodEdges)
5: islLabels2, islSizes2, bipart2isl2 = getIslands(T2, goodEdges)
6: distance = 0
7: for i ∈ goodEdges:
8: i11, i12 = bipart2isl1[i.bitmask]
9: i21, i22 = bipart2isl2[i.bitmask]

10: for (j1, j2) ∈ [(i11, i21), (i12, i22)]:
11: if j1.visited == False:
12: distance+=islSizes1[j1] + islSizes2[j2]
13: if islLabels1[j1] ∩ islLabels2[j2] == ∅:
14: distance+=1
15: j1.visited = True
16: if goodEdges == ∅ :
17: distance+= islSizes1[1] + islSizes2[1]
18: if islLabels1[1] ∩ islLabels2[1] == ∅:
19: distance += 1
20: return distance

We provide an open source implementation of LRF in Python as part of
the pyLabeledRF package (https://github.com/DessimozLab/pylabeledrf).
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Algorithm 2 getIslands(T, goodEdges)

1: islLabels = [{}]
2: islSizes = [−1]
3: bipart2isl = NewHashTable()
4: function traverseT(t, oldIsland):
5: if t is a leaf:
6: return
7: else if t.rootedge.bipartition ∈ goodEdges:
8: islLabels.append({t.label})
9: islSizes.append(1)

10: newIsland = islSizes.length
11: mask = t.rootedge.bipartition.bitmask
12: bipart2isl[mask] = (oldIsland, newIsland)
13: bipart2isl[BitComplement(mask)] = (newIsland, oldIsland)
14: for c ∈ t.children:
15: return traverseT (c, newIsland)
16: else:
17: islLabels[oldIsland].add(t.label)
18: islSize[oldIsland]+=1
19: for c ∈ t.children:
20: return traverseT (c, oldIsland)
21: traverseT (T, 1)
22: return islLabels, islSizes, bipart2isl
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Figure 6: Empirical comparisons of the distance inferred for an increasing
number of random edit operations (node insertion, deletion, substitution) on
the NOX4 gene tree (182 leaves), using the classical RF distance (top), the
ELRF approximation ([5]; middle), and the LRF exact distance (bottom).

5 Experimental results

To illustrate the usefulness of LRF , we performed two experiments. First,
we compared LRF with RF and ELRF on a labeled gene tree with random
edits. Second, we used LRF to tackle an open question in orthology infer-
ence: does labeled gene tree inference benefit from denser taxon sampling?

5.1 Empirical comparison of LRF with RF and ELRF

To get a first sense of LRF ’s ability to measure the actual number of ed-
its between two trees, we performed a simulation study alongside RF and
ELRF . We retrieved the labeled tree associated with human gene NOX4
from Ensembl release 99 [26], containing 182 genes, including speciation and
duplication nodes. Next, we introduced a varying number of random edits,
with 10 replicates, as follows: with probability 0.3, the label of one random
internal node was substituted (from a speciation label into a duplication
one or vice versa); the rest of the probability mass function was evenly dis-
tributed among all internal edges (each implying a potential node deletion)
and all nodes of degree > 3 (each providing the opportunity of a poten-
tial node insertion). For ELRF , consistent with its underlying model, we
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added the requirement that edge removal only affect edges with adjacent
nodes with the same label.

For each of RF , LRF and ELRF , we provide the distance as a function
of the number of random edits (Fig. 6). As expected, the conventional RF
distance returns the smallest values because it ignores labels; it however
tracks quite well the expected number of node insertion and/or removal
(dashed line). The two labeled RF alternatives performed similarly, but the
heuristic for ELRF occasionally exceeded the true number of edit operations
— a shortcoming that we do not have with LRF , as we have an exact
algorithm for this distance. Both labeled RF variants tracked better the
actual number of changes, until around 13 edits for LRF or ELRF , after
which the minimum edit path starts to be often shorter than the actual
sequence of random edits.

5.2 The effect of denser taxon sampling on labeled gene tree
inference

We used LRF to assess the effect of species sampling for the purpose of
labeled gene tree reconstruction. Consider the problem of reconstructing
a labeled tree corresponding to homologous genes from 10 species. Our
question is: is it better to infer and label the tree using these 10 species
alone, or is it better to use more species to infer and label the tree, and
then prune the resulting tree to only contain the leaves corresponding to
the original 10 species? While denser taxon sampling is known to improve
unlabeled phylogenetic inference [19], we are not aware of any previous study
on labeled gene tree inference.

First, using ALF [8], we simulated the evolution of the genomes of 100
extant species from a common ancestor genome containing 100 genes (Pa-
rameters: root genome with 100 genes of 432 nucleic acids each; species
tree sampled from a birth-death model with default parameters; sequences
evolved using the WAG model, with Zipfian gap distribution; duplication
and loss events rate of 0.001). In the simulation, genes can mutate, be du-
plicated or lost. All the genes in the extant species can thus be traced back
to one of these 100 ancestral genes and be assigned to the corresponding
gene family. The 100 true gene trees, including speciation and duplication
labels, are known from the simulation. However, in our run, one tree ended
up containing only two genes (due to losses on early branches) and was thus
excluded from the rest of the analysis.

To evaluate the inference process, among the 100 species, we randomly
selected nested groups of 10, 20, 30, 40, 50, 60, 70, 80 and 90 species. We
considered the 10 species in the first group as the species of interest. All
other species were used to potentially improve the reconstruction of the
gene trees for the first 10 genomes. Then, for each group, we aligned protein
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Figure 7: Denser taxon sampling decreases labeled tree estimation error:
labeled gene trees reconstructed with an increasing number of auxiliary
genomes (i.e. obtained by including the additional genomes during tree
inference and labeling, followed by pruning) have a smaller LRF distance to
the true trees. Error bars depict 95% confidence intervals around the mean.

sequences translated from homologous genes using MAFFT L-INS-i [14],
inferred phylogenetic trees from the alignments using FastTree [21], and an-
notated their nodes using the species overlap algorithm [24] as implemented
in the ETE3 python library [12]. Finally, we pruned both the inferred gene
trees and the true trees to include only proteins corresponding to the 10
species of interest.

We used LRF to assess the distance between the estimated and true
labeled trees, for the various number of auxiliary genomes considered. For
each scenario, we computed the mean LRF distance over all gene trees
(Fig. 7). The mean error (expressed in LRF distance) decreases as the
number of auxiliary species increases. This simple simulation study suggests
that denser species sampling improves labeled gene tree inference.

6 Discussion and Conclusion

The LRF distance introduced here overcomes the major drawback of ELRF ,
namely the lack of an exact polynomial algorithm for the latter. Indeed, with
ELRF , minimal edit paths can require contracting “good” edges, i.e., edges
present in the two trees [5]. By contrast, with LRF , we demonstrated that
there is always a minimal path which does not contract good edges. Better
yet, we proved that LRF can be computed exactly in linear time. The new
formulation also maintains other desirable properties: being a metric, even
for an arbitrary number of label types, and reducing to the conventional
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Robinson Foulds distance in the presence of trees with only one type of
label.

Our experimental results provide a relationship between the number of
random edits and the computed edit distances. At first sight, it may seem
surprising that in a tree of 182 leaves, the minimum edit path under LRF
or ELRF already starts underestimating the actual number of random edit
operations after around 13 operations. However, this can be explained by
the “birthday paradox” [1]: to be able to reconstruct the actual edit path,
no two random edits should affect the same node. Yet the odds of having,
among 13 random edits, at least two edits affecting the same internal node
(among 179) is in fact substantial — approximately 36% in our case — just
like the odds of having two people with the same birthday in a given group
is higher than what most people intuit.

It has to be noted that LRF has the same limitations as RF regarding
lack of robustness and skewed distribution. Moreover, like RF and ELRF ,
the main limitation of LRF is the lack of biological realism. For one thing,
there is no justification to assign equal weight to the three kinds of edits in all
circumstances. For instance, it is typically highly implausible to introduce
a speciation node at the root of a subtree containing multiple copies of a
gene in the same species. However, LRF complement analyses performed
using more realistic models are either unavailable or too onerous to compute.
In particular, the ability of LRF to support an arbitrary number of labels
makes it applicable to gene trees containing more than just speciations and
duplications, such as horizontal gene transfers or gene conversion events.

Finally, LRF constitutes a clear improvement over RF in the context
of gene tree benchmarking, where trees inferred by various reconciliation
models are compared using a distance measure [3, 18]. Such an application
was illustrated in the simulation study of the previous section, in which
we observed that denser taxon sampling improved labeled tree inference
computed using the widely used species overlap method. More work will be
needed to assess the generality of this result.
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