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Abstract

The Covid-19 pandemic outbreak was followed by an
:
a huge amount of modeling

:::::::
modelling

:
studies

in order to rapidly gain insights to implement the best public health policies. However, most of those

compartmental models used a classical
::::
Most

::
of

:::::
these

::::::::::::
compartmental

::::::
models

:::::::
involved ordinary di�er-

ential equations (ODEs) system based formalism that came with the tacit assumption
::::::
systems.

:::::
Such

:
a

::::::::
formalism

::::::::
implicitly

::::::
assumes

::::
that the time spent in each compartment does not depend of

::
on

:
the time

already spent in it
:
,
:::::
which

:
is
::
at

::::
odds

::::
with

:::
the

:::::
clinical

::::
data. To overcome this “memoryless” issue, a widely

used workaround is to arti�cially
:::::::
solution

:
is
::
to

:
increase and chain the number of compartments of an

:
a

unique reality (e.g. many compartments for infected individuals). It allows for a
:::
have

:::::::
infected

::::::::
individual

::::
move

:::::::
between

::::::
several

::::::::::::
compartments).

:::::
This

:::::
allows

:::
for greater heterogeneity and thus be closer to the

observed situation, at the cost of rendering
::

but
::::

also
::::
tends

:::
to

::::
make

:
the whole model more di�cult to

apprehend and parametrize. We propose here an
::::::::::
parameterize.

:::
We

:::::::
develop

:
a
:::::::::::::
non-Markovian alterna-

tive formalism based on a partial di�erential equations (PDEs) system instead of ordinary di�erential

equations, whichprovides naturally
:::::
instead

::
of

::::::
ODEs,

::::::
which,

::
by

::::::::::
construction,

:::::::
provides

:
a memory struc-

ture for each compartment , and thus allows to keep a restrained
::::::
thereby

:::::::
allowing

::
us

::
to

::::
limit

::
the

:
number

of compartments. We use such a model applied
::::
apply

:::
our

:::::
model

:
to the French situation, accounting for

vaccinal
::::
2021

:::::::::::
SARS-CoV-2

:::::::
epidemic

::::
and,

::::
while

:::::::::
accounting

:::
for

::::::::::::
vaccine-induced

:
and natural immunity

:
,

::
we

::::::
analyse

:::
and

::::::::
determine

:::
the

:::::
major

::::::::::
components

:::
that

::::::::::
contributed

::
to

:::
the

:::::::
Covid-19

:::::::
hospital

::::::::
admissions.

The results seem to indicate that the vaccination rate
:::::::
observed

:::::::::
vaccination

:::
rate

:::::
alone is not enough to

ensure the end of
::::::
control the epidemic, but, above all, highlight

:::
and

:
a
:::::
global

::::::::
sensitivity

::::::
analysis

::::::::
highlights

a huge uncertainty attributable to the age-structured contact matrix.
:::
Our

::::
study

:::::
shows

:::
the

::::::::
�exibility

:::
and

::::::::
robustness

::
of

::::
PDE

::::::::
formalism

::
to

::::::
capture

:::::::
national

:::::::::
COVID-19

::::::::
dynamics

:::
and

:::::
opens

:::::::::
perspectives

::
to

:::::
study

::::::
medium

::
or
::::::::

long-term
::::::::

scenarios
:::::::
involving

:::::::
immune

::::::
waning

::
or

::::
virus

::::::::
evolution.

:
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1 Introduction
Shortly after the Covid-19 outbreak

::
in late 2019, many e�orts were put in diverse research areas to understand

both the disease and its aetiological agent, SARS-CoV-2, and produce the tools needed
::
to

:::::::
produce

:::::
tools to

deal with what quickly became a pandemic. Among those areas, mathematical modeling
:::::::::
modelling studies

proliferated to better grasp the epidemics’ dynamics on a —at �rst— short and medium-term scale. Stochas-

tic models were more appropriate early on to take into account the randomness of the transmission events5

[Kucharski et al., 2020; Hellewell et al., 2020; Beneteau et al., 2021], but they were rapidly complemented by

deterministic models since many epidemics were settled within a couple of months in many countries. These

models’
::::::::
modelling

:
results provided valuable insights to guide public health policies, often on a nationwide

scale [RSTB, 2021].

Many of the deterministic models developed were variations of the classical Susceptible–Infected–Re-10

covered (SIR) compartmental model , usually involving
:::
and

::::::
usually

::::::::
involved a system of ordinary di�eren-

tial equations (ODEs) [Keeling and Rohani, 2008]. Such a simple formalism was adapted at �rst given the

unknowns regarding the natural history of the disease. However, the knowledge accumulated in a matter

of months made it clear that several assumptions were biologically unrealistic. In particular, the residence

times in various compartments were not distributed exponentially, and the related “lack of memory” (also15

named Markov property) —meaning that the time spent in a compartment does not depend on the time

already spent in the compartment, as implied
::::::::
implicitly

::::::::
assumed

:
by the ODE formalism— became partic-

ularly detrimental to short-term forecasting (see Supplementary Figure S1
:::
for

::
an

::::::::::
illustration

::
of

:::
the

:::::::
impact

::
of

:::::::
memory

:::
on

:::
the

:::::
time

:::::
spent

::
in

:
a
::::::::::::
compartment). For example, for the time elapsed between infection and

potential hospital admission,
::::::
French

:::::::::::::
hospitalisation

::::
data

:::::::
analyses

::::
show

:
this memoryless hypothesis does not20

hold [Salje et al., 2020; Sofonea et al., 2021]. A
::::::
simple workaround to this issue consisted in adding new com-

partments, e.g. for exposed people but not yet infectious, thereby increasing the heterogeneity in the infected

period. Earlier studies indeed show that the addition of intermediate compartment transform
::::::::::::
compartments

:::::::::
transforms the sum of exponential

:::::::::::
exponentially

:
distributed waiting times into an

:
a hypoexponential distri-

bution [Lloyd, 2001]. Note that taking memory into account
::::::::::
Accounting

:::
for

::::::::
memory can also be achieved25

by completely di�erent formalism
::::
other

::::::::::
formalisms such as discrete-time modelling, and thus be tailored to

epidemiological data the time resolution of which is almost always that of the day [Sofonea et al., 2021].

Nevertheless, depending on the issue dealt with by the model, sources of heterogeneity might
::::
may emerge

and increase the number of host categories and thus the total number of equations and parameters. With

the onset of vaccination campaigns, this phenomenon became even more pronounced [Kiem et al., 2021;30

Moore et al., 2021]. Even if this approach
:::
the

::::::::
approach

:::::::::
consisting

::
in

::
a
:::::
chain

::
of

:::::::::::::
compartments

:::
in

:::::
ODE

::::::
systems

:
remained a useful approximation, the initial gain in simplicity progressively vanished, making the

models increasingly di�cult to analyse and parameterize.

Virus
:::
On

::
a

:::::
longer

:::::
time

::::
scale,

:::::
virus evolution and the emergence of variants of concern (VOC) [Davies,

Abbott, et al., 2021], coupled with some pre-existing unknowns regarding the behaviour of natural and35

vaccine-induced immune responses [Zellweger et al., 2020; Alizon and Sofonea, 2021], further increased

the need for modelling approaches. However, even for medium or long-term projections, ODE-based ap-

proaches remain far from ideal since immunity waning may occur rapidly (at least from a prospective point

of view) and might not be memoryless.

To address these issues, we introduce
:::
use an alternate formalism relying on partial di�erential equations40

(PDEs) instead of ODEs. Similarly to
:
,
::::
with

::::::
which

::
it
::::::
shares

:::::::::
similarities

::::
and

:::::::::
simplicity

::
in
:::

its
::::::::::
formalism.

::::::::
Although

:::::::
models

::::
based

:::
on

:::::
PDEs

:::::::
require

::
an

:::::::::
additional

:::::
initial

:::::
e�ort

:::
for

:::::::::::::::
parameterization,

::::
they

::::
o�er

::::::::
increased

::::::::
�exibility

::::::
because

:::::::::
biological

:::::::::::
assumptions

:::
can

::
be

:::::::
strongly

:::::
varied

::::::::
without

::::::
adding

::::
more

:::::::::::::
compartments.

:::::::::::
Interestingly,

:::
the

:::::::
seminal

:::::
work

::
on

::::
the

::::
SIR

:::::
model

:::
by

:
Kermack and McKendrick [1927]

:::
was

:::::::::
implicitly

:::::
based

:::
on

:
a
:::::
PDE

:::::::::
formalism

:::
and

:::::
ODE

:::::::
models

::::
were

::::::
simply

:::::::::
presented

::
as

::::::
special

::::
cases

:::::
when

:::::::::
infectivity

::::
and

:::::::
removal

::::
rates

:::::
were45

:::::::
assumed

::
to

:::
be

::::::::
constant.

::::::
PDEs

:::
are

:::::
often

::::
used

::
in

::::::::::::::
epidemiological

::::::
models

::
to

::::
take

::::
into

::::::::
account

:
a
::::::::::
population

:::::::::::
age-structure

::
or

:
a
::::::
spatial

::::::::
structure [Hethcote, 2000; Brauer, Castillo-Chavez, and Feng, 2019]

:
.
::::
PDE

:::::::
models

:::
can

::::
also

:::::::
elegantly

:::::::::::
incorporate

:::::::::::
non-linearity

::
in

:::::::
models

:
(
:::
e.g.

:::
for

::::::::::::
infectiousness

::::::
pro�le [Hoppenstaedt, 1975;

Inaba, 2017]
::
or

:::::::::
immunity

:::::::
waning [Ehrhardt, Gašper, and Kilianová, 2019]

:
).
::::::::::

Including
::::
such

::::::
aspects

:::::
with

2



::::::::::
ODE-based

::::::
models

::::::
would

:::::::
require

:::::
more

:::::
e�ort

:::::::
because

::
it
::::::

would
:::

be
::::::::
necessary

:::
to

::::
add

::::::::::::
compartments

:::::
and,50

::::::::
therefore,

::::::
change

::::
the

::::::::
structure

::
of

:::
the

::::::
model

:::::
itself.

:::::::::
Regarding

:::::::::
Covid-19

:::::::::
epidemics,

::::
PDE

::::::
based

::::::::::
approached

::::
have

::::::
mainly

:::::
been

::::
used

:::
to

::::
deal

::::
with

::::::
spatial

::::::::
structure

::
(
::
e.g. [Wang et al., 2020; Viguerie et al., 2021]

:
)
::::
and

:::::::::
sometimes

::
to

::::
add

:::
the

:::
age

:::
of

::::::::
infection

::
in

:::
the

::::::
model

::::::::
structure

:
[Wu et al., 2022; Richard et al., 2021].

:::::
But,

::::::
overall,

::::::::::
PDE-based

::::::
models

::
of

::::::::
Covid-19

:::::::::
epidemics

:::::::
remain

:::::::
marginal

:::::::::
compared

::
to

::::::::::
ODE-based

:::::::
models.

:

::
In

::::
this

:::::
study,

:::
we

::::
build

:::::
upon

:::::
earlier

:::::
work

::
by

:
Richard et al. [2021], our model is

:::
who

:::::::::
developed

:
a
::::::::::::::
non-Markovian55

:::::
model

:
structured in terms of the age of the host (in years) and the infection age

::
of

:::
the

::::::::
infection

:
(in days).

The originality is that we incorporated
:::
We

::::::
extend

::
it

::
by

::::::::::
generalising

:::
the

::::::
PDEs

:::::::::
non-linear

::::::::
properties

:::
to vacci-

nation status and clearance memory. More precisely, we also record the time since vaccination as well as the

time since clearance (both in days). These daily time structures allow us to keep track of the time spent in

each compartment, thereby providing a convenient way to correct the memory problem while limiting the60

number of epidemiological compartments. Despite sharing similarities and simplicity in its formalism, PDEs

system based model needs a supplementary initial e�ort for parameterization, but in exchange it allows for

more �exibility without adding more compartments.

We �rst present the details of the model and derive some of its main properties, such as the basic repro-

duction number. Then, we perform a sensitivity analysis to identify which parameters a�ect epidemiological65

dynamics the most. We also use the model
:::
We

:::
also

:::::
show

::::
that

:::
the

::::::
model

::::
can

::
be

:::::::
tailored to analyse the past

French Covid-19 epidemic and formulate projections regarding future trends. Finally, we discuss perspec-

tives to extend the model and tackle additional questions regarding Covid-19 epidemic
::::::::

epidemics.

2 Model
2.1 Model overview70

The density of susceptible individuals of age a ∈ [0, amax] at time t is denoted by S(t, a). Susceptible

individuals leave the compartment either by being infected, at a rate λ(t, a) corresponding to the force of

infection, or by becoming vaccinated, at a rate ρ(t, a).

Infected individuals are denoted I`(t, a, i). The exponent ` ∈ {m, s, d} corresponds to the three types

of infections: m for mild and asymptomatic cases, s for severe cases that will require hospitalization at some75

point before recovering, andd for severe cases that always result in the patient’s death. Each of these categories

of infected individuals are
:
is
:
further strati�ed according to the time since infection, which is indexed by i ∈

[0, imax]. Practically, this a�ects the recovery rates (γm(a, i) and γs(a, i)) and the death rate (µ(a, i)), as well

as the di�erent transmission rates β`(a, i), ` ∈ {m, s, d}; all of which are functions of i. The number of

new mildly infected individuals at a given time t is given by the boundary condition
:
,80

Im(t, a, 0) = (1− pa)λ(t, a)S(t, a), (1)

where pa is the proportion of infections that lead to severe cases for individuals of age a.

We add a similar time structure j to record time since clearance for the density of recovered individuals,

R(t, a, j), in order to account for a possible post-infection immunity waning at a rate σ(a, j). Recovered

individuals are assumed to be vaccinated at the same rate as susceptible individuals, ρ(t, a). The number of

newly recovered individuals of age a at time t is given by the boundary condition85

R(t, a, 0) =

∫ imax

0

[
γs(a, i)Is(t, a, i) + γm(a, i)Im(t, a, i)

]
di. (2)

The density of vaccinated individuals, V (t, a, k), also has its own time-structure k to capture the time

since vaccination. This allows to take
::::::
taking into account the immunity waning, σv(a, k), or any temporal

variation in vaccine e�cacy. The number of newly vaccinated individuals is given by the boundary condition

V (t, a, 0) = ρ(t, a)S(t, a) + ρ(t, a)

∫ jmax

0

R(t, a, j)dj. (3)

3



Since vaccine e�cacy may be imperfect, we assume that vaccinated individuals can still be infected by the90

virus, but at a rate reduced by 1− ε(a, k) compared to susceptible unvaccinated individuals. If the infection

is mild, infected vaccinated hosts move to the Imv(t, a, i, k) compartment, which is separated from mild-

infected former susceptible individuals to allow for reduced transmission at a rate 1 − ξ(a, k). Vaccinated

individuals can also develop a severe form of Covid-19 following infection but at a rate reduced by (1 −
ν(a, k)). And therefore reduced by (1− ε(a, k))(1− ν(a, k)) compared to susceptible individuals. Hence,95

the number of
:::::
newly

:
severely infected individuals of age a at time t is given by the boundary condition

:::::::::
conditions

Is(t, a, 0) = pa

(
1− ifra

pa

)
λ(t, a)

[
S(t, a) +

∫ kmax

0

(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
(4)

and

Id(t, a, 0) = ifra λ(t, a)

[
S(t, a) +

∫ kmax

0

(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
, (5)

where ifra denotes the infection fatality rate (IFR), that is the fraction of individuals of age a who die from

the infection. It is worth to note
::::::
noting that due to VOC emergence inducing

::
an increase in virulence, both100

pa and ifra will be scaled by κ accounting for this increase.

Regarding the infected vaccinated individuals who develop mild symptoms, the boundary conditions

are

Imv(t, a, 0, k) = [1− ε(a, k)] [1− (1− ν(a, k))pa]λ(t, a)V (t, a, k) (6)

and

Imv(t, a, i, 0) = 0. (7)

The model �owchart is displayed in Figure 1. Notice that our model only has 8 compartments. Note also105

that vaccines can act in three non mutually exclusive ways by decreasing the risk of being infected (ε(a, k)),

the probability to develop severe symptoms if infected (ν(a, k)), and the transmission rate if infected (ξ(a, k)).

The change over time, including the leaving of each compartment, is provided by the following PDE

4



Infected

Severe cases
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Vak

Raj
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Figure 1: Model �owchart. On this �owchart, subscripts denote additional structure beside time t for each

compartment: a stands for the host age, i for
:::
the time since infection, j for

:::
the time since clearance,

:
and k

for
:::
the time since vaccination. Exponent denotes for

:::::::::
Exponents

:::::::
indicate di�erent types of infections: m for

mild or asymptomatic cases, s for severe cases who will survive, d for cases who will die
:
,
:
and mv for mild

infection though vaccinated host.
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system, coupled with the boundary conditions (1)–(7):

∂S(t, a)

∂t
= −λ(t, a)S(t, a)− ρ(t, a)S(t, a)

+

∫ jmax

0

σ(a, j)R(t, a, j)dj

+

∫ kmax

0

σv(a, k)V (t, a, k)dk, (8)(
∂Im(t, a, i)

∂t
+
∂Im(t, a, i)

∂i

)
= −γm(a, i)Im(t, a, i), (9)(

∂Is(t, a, i)

∂t
+
∂Is(t, a, i)

∂i

)
= −γs(a, i)Is(t, a, i), (10)(

∂Id(t, a, i)

∂t
+
∂Id(t, a, i)

∂i

)
= −µ(a, i)Id(t, a, i), (11)(

∂R(t, a, j)

∂t
+
∂R(t, a, j)

∂j

)
= −ρ(t, a)R(t, a, j)− σ(a, j)R(t, a, j) (12)(

∂V (t, a, k)

∂t
+
∂V (t, a, k)

∂k

)
= −σv(a, k)V (t, a, k)

− (1− ε(a, k))λ(t, a)V (t, a, k)

+

∫ imax

0

γmv(a, i)Imv(t, a, i, k)di, (13)(
∂Imv(t, a, i, k)

∂t
+
∂Imv(t, a, i, k)

∂i
+
∂Imv(t, a, i, k)

∂k

)
= −γmv(a, i)Imv(t, a, i, k), (14)

with

λ(t, a) =

∫ amax

0

(1− c)2K(a, a′)

∫ imax

0

[
βm(a′, i)Im(t, a′, i) + βs(a′, i)Is(t, a′, i) +

βd(a′, i)Id(t, a′, i) + βmv(a′, i)

∫ kmax

0

(1− ξ(a′, k))Imv(t, a′, i, k)dk

]
di da′,

(15)

for any (t, a, i, j, k) ∈ R+ × [0, amax] × [0, imax] × [0, jmax] × [0, kmax]. Here, K(a, a′) is the kernel

giving the mean contact rate between two individuals belonging respectively to the age classes a and a′. We

also introduce e�cacy, denoted c, of non-pharmaceutical interventions (NPIs) in reducing the contact rates110

between individuals independently of their age. We assume NPIs a�ect all individuals indi�erently, no matter

the compartment they belong to. Therefore, since both susceptibles and infected individuals are targeted, the

reduction of the contact rate is a squared term.

The above system is associated with Assumption S1 in Supplementary Methods and the following initial

conditions115

S(t = 0, ·) = S0(·) ∈ L∞+ ([0, amax]),

R(t = 0, ·, ·) = R0(·, ·) ∈ L∞+ ([0, amax]× [0, jmax]),

V (t = 0, ·, ·) = V0(·, ·) ∈ L∞+ ([0, amax]× [0, kmax]),

I`(t = 0, ·, ·) = I`
0
(·, ·) ∈ L∞+ ([0, amax]× [0, imax]), for ` ∈ {m, s, d},

Imv(t = 0, ·, ·, ·) = Imv
0

(·, ·, ·) ∈ L∞+ ([0, amax]× [0, imax]× [0, kmax]).

(16)

Notice that the well-posedness of System (1)–(16) is analysed in Supplementary Methods A.2.
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Table 1: Model parameters. For each parameter, we indicate the default value used and the references used.

Parameter Value Reference
Generation time Weibull(2.83, 5.67) Ferretti et al. [2020]

Proportion of severe cases (pa),

IFR (ifra) and increase in

virulence (κ)

0.0113 (mean), 0.0022 (mean)

and 1.65 (baseline)

Verity et al. [2020]; Challen et

al. [2021]; Davies, Jarvis, et al.

[2021]

Mild recovery rate Adapted Salje et al. [2020]

Severe recovery rate Adapted Salje et al. [2020]; Lefrancq et al.

[2021]

Vaccination rate Fitted https://data.gouv.fr
Total severity reduction 0.925 (e�cacy after 2 doses) Public Health England [2021]

Infection immunity 0.875 (e�cacy after 2 doses) Public Health England [2021]

Transmission reduction 0.75 (e�cacy after 2 doses) Public Health England [2021]

(see Supplementary Meth-

ods B.5)

Initial proportion of recovered 0.149 [0.132− 0.169] Hozé et al. [2021]

Age structure Real data https://www.insee.fr/fr/
statistiques/2381474

Contact matrix — SPF/CNAM and Béraud et al.

[2015]

2.2 Model parametrization

In this study, we focus on the French Covid-19 epidemic in 2021. The values used are shown in Table 1

along with the (French) data we use for parameter inference. Additional details about these can be found in

Supplementary Methods B.120

The basic reproduction number is �xed but varies in time due to the emergence of the α and δ VOCs.

The α VOC was �rst detected in France in early January and rapidly became dominant. Therefore,
:
theR0

retained starting in January was 4.5 [Haim-Boukobza et al., 2021; Davies, Abbott, et al., 2021]. By the month

of July, theαVOC was supplanted by the δVOC, increasing theR0 up to 6 [Alizon, Haim-Boukobza, et al.,

2021].125

Regarding the modelling of vaccine e�cacy, for simplicity, we neglect immune waning, i.e. the decrease

of immunity with time, meaning that σ ≡ 0 and σv ≡ 0
::::::::::
σ(a, j) ≡ 0

::::
and

::::::::::::
σv(a, k) ≡ 0. This assumption

is motivated by the fact that we consider a medium-term scenario and it could readily be modi�ed. We also

assume that the three types of vaccine e�cacies (against reinfection, severe symptoms, and transmission) are

not maximal upon entry in
::::
into the vaccinated compartment. More precisely, we assume a double sigmoid130

curve to capture two vaccine injections (Figure S2). The di�erent levels of e�cacy are based on the Public

Health England [2021] report, and additional details are provided in the Supplementary Methods B.5. The

vaccination rate ρ(t, a) is based on the observed French data (see Supplementary Methods B.6 for details

about this implementation).

The di�erent transmission rates β`(a, i), ` ∈ {m, s, d}, are simply the generation time, weighted to135

correct for the possibility for individuals to leave the infected compartments before the generation time be-

comes null.

Concerning some age-strati�ed parametrization functions, we assume no di�erences between age-groups
::

age

::::::
groups. This assumption is either made for parsimony reasons (i.e. for γm(a, i), γs(a, i), andµ(a, i)) or be-

cause of lack of information (e.g. for βm(a, i) and βs(a, i)).140
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Figure 2: Coe�cients of variation of each element of the SPF/CNAM contact matrix over the 38 weeks

available. The higher the value, the greater the variability in contacts between age-classes over the di�erent

weeks.

2.3 Contact matrices

Due to the available data
:::
data

::::::::
available and following the parametrization relative to the severity disease, the

kernel K(a, a′) is also given for a �nite number of age classes, thus providing a contact matrix. And this

contact matrix K(a, a′) is also an important part that needs to be de�ne
::::::
de�ned

:
as it will de�ne the age-

structure of the population regarding an age-severity di�erentiated infectious disease [Valle, Hyman, and145

Chitnis, 2013; Jacco Wallinga, Teunis, and Kretzschmar, 2006]. In that regard, we decide to present two com-

peting choices. The �rst one from Béraud et al. [2015] was estimated to better apprehend the spread of infec-

tious diseases. The second source of contact matrices comes from the French health agency (Santé Publique

France) and the French national health insurance (CNAM). They provide Covid-19 speci�c contact matrices

for 38 weeks
::
38

:::::::::::
week-speci�c

:::::::
contact

:::::::
matrices

:
ranging from August , 2020 to April , 2021.150

The latter reveal pronounced changes across weeks. These are most likely due to a variety of reasons such

as control restrictions policies or school holidays. Interestingly, these changes do not a�ect all age classes in

the same way (Figure 2).

The two sources of contact matrix also exhibit qualitative pattern di�erences, as illustrated in Figure 3.

Indeed, that from Béraud et al. [2015] gives more weight to relatively young people who tend to have contact155

with people close in age, such as colleagues or friends, which could be representing the active population.

Furthermore, in this matrix, older people have few contacts. Conversely, SPF matrices seem to have more

extra-generational contacts, which could increase the role of transmission within households.

Therefore, we included all (normalized) contact matrices in the sensitivity analysis.

2.4 Model outputs and �tting procedures160

The main model outputs are population sizes of the compartments over time
::::::::
overtime for the year 2021

in France. The French publicly available hospital admission data is
::

are
:
not strati�ed by age so we only use

the global incidence data for parameterization and comparison purposes. In our model, incidence data in

hospital admissions dynamics corresponds to the entry in the severe infection compartments (Is(t, a, i) and
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Figure 3: Contact matrices sources. The �rst source corresponds to 38 weekly contact matrices from Au-

gust , 2020 to April , 2021 provided by SPF / CNAM (on the left, the mean contact matrix over the 38

weeks.). The second source originates from Béraud et al. [2015] (on the right). All matrices were normalized

in order to be compared.

Id(t, a, i)) with a twelve days lag [Salje et al., 2020].165

For each compartment dynamic, we build a 95% con�dence interval using the 0.025 and 0.975 quantiles

at each time step of all model runs used for the sensitivity analysis (see below).

Regarding parameter inference, we consider
:
a
:
daily minimal sum of squares between the data and sim-

ulations. We �rst �t the vaccination rate ρ(t, a) on French data as detailed in Supplementary Methods B.6.

Due to high computational cost, we �t the NPI policies e�cacy only on the median trajectory (de�ned as the170

trajectory obtained using the median parameter set but with the Béraud et al. [2015] contact matrix).

2.5 Sensitivity analysis

We perform a variance-based sensitivity analysis to assess the robustness of the model given its inputs. We

compute the Sobol main sensitivity indices for each model parameter and for each time step [Saltelli et al.,

2008]. For an input parameterXi and a given day, this index re�ects the fraction of the variance in the output175

Y (here the daily hospital admissions) and is de�ned by

Si =
Var(E[Y |Xi])

Var(Y )
.

The di�erence between the sum of the main indices and 1 corresponds to the variance originating from the

interactions between all the parameters. The analysis was performed on 30, 400 model runs with di�erent

parameters sets chosen using a Latin Hypercube Sampling within the ranges detailed in Table S1.

Assessing the sensitivity of model outputs depending on the contact matrix is more delicate since draw-180

ing each matrix coe�cient would be numerically too costly and drawing an entire matrix would cause a loss

of information regarding the role of the di�erent age classes. However, we possess 38 weekly contact matrices

from SPF and another contact matrix from Béraud et al. [2015]. Therefore, for each age class, we randomly

draw the corresponding age class column (i.e. the rate of being infected for the given age class by all the age

9



classes) among the 39 available matrices. As discussed in Section 2.3, the two sources of contact matrices ex-185

hibit qualitatively di�erent patterns, suggesting potential di�erence
:::::::::
di�erences

:
in terms of within-household

transmission or active population transmission patterns. To avoid giving more weight to a speci�c pattern,

the Béraud et al. [2015] matrix was weighted 38 times more than the SPF matrix.

Additional details regarding the sensitivity analysis can be found in Supplementary Results C.

3 Results190

3.1 Basic reproduction number and NPIs

The basic reproduction number, denoted R0, is a widely used metrics
::::::
metric in epidemiology because it

corresponds to the average number of secondary infections caused by an infected host in an otherwise fully

susceptible population [Anderson and Robert M May, 1992]. Calculating it for our PDE system is not trivial

and for this
:
, we use the next generation operator approach [Diekmann, Heesterbeek, and Metz, 1990; Inaba,195

2012]. More precisely, we show that the number of new infections in individuals of age a at time t in a fully

susceptible population, denoted IN (t, a), satis�es the renewal equation (see Supplementary Methods A.3

for details)

IN (t, a) = S0(a)

∫ t

0

∫ amax

0

K(a, a′)Ω(a′, i)IN (t− i, a′)da′di, (17)

where Ω(a, i) can be interpreted as the infectiousness expectation of an individual of age a infected since

time i and is de�ned by200

Ω(a, i) = βm(a, i)(1− pa)πm(i) + βs(a, i)pa

(
1− ifra

pa

)
πs(i) + βd(a, i) ifra πd(i),

where π` is the survival
::::::::
“survival”

:
probability (i.e. remaining in the compartment) of infected individuals

of the I` compartment. Mathematically, π`(a, i) = e−
∫ i

0
f`(a,r)dr

, with f` = γm, γs, µ, respectively, for

` = m, s, d.

Following the Next Generation Theorem, the basic reproduction numberR0 is calculated as the spectral

radius, noted r(U), of the next generation operatorU de�ned fromL1

+([0, amax],R) into itself by205

U : v 7−→ S0(·)
∫ imax

0

∫ amax

0

K(·, a′)Ω(a′, i)v(a′)da′di.

For parametrization purpose, we assume that the contact matrixK(·, ·) is given up to a positive constant β
(to be determined), such that K(·, ·) = βK(·, ·), and K satis�es

∑
i

∑
jK(ai, aj) = 1. Consequently,

we �nd that β is given by

β =
R0

r
(
U
) , (18)

whereU is the operator de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ amax

0

K(·, a′)Ω(a′)v(a′)da′,

with

Ω(a) =

∫ imax

0

(1− pa)βm(a, i)πm(i) + pa

(
1− ifra

pa

)
βs(a, i)πs(i) + ifraβ

d(a, i)πd(i)di.

In the following, theR0 is set to correspond to that of theα and then the δ VOC, which are both higher210

than that of the initial lineages. Note that, within this paper
:::::
study, we scaleK(·, ·) by

β∗ := (1− c)2β =
(1− c)2R0

r
(
U
)

rather than β because we estimate the level of NPI e�cacy (c) beforehand on real data, and for prospective

scenarios after the current date, we arbitrarily set it to the desired value.
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Figure 4: Temporal sensitivity analysis. We represent the main Sobol indices for each time step. These

indices give the relative variance explained by each parameter. There are 9 parameters associated to the contact

matrix corresponding to the rate of being infected for each age class from younger to older (bottom to top).

‘Virulence’ corresponds to the (increased) virulence of the VOC.

3.2 Sensitivity analysis

Performing per time-point sensitivity analyses on the daily hospital admissions for all the model parameters215

(Figure 4), we noticed that most of the variance originated from the contact matrix (and its 9 parameters),

especially the younger age classes. This e�ect was even more striking when considering the raw variance

originating from each parameter (Figure S3).

We also observed important time-variations
::::
time

:::::::::
variations of some parameters, such as the generation

time Weibull’ scale parameter. The time period where this is the most predominant also corresponds to the220

period with few newly hospital admissions (Figure 6), and therefore a lesser variance. The sharp decrease of

this parameter sensitivity coincides with the epidemic’s growth reprisal.

Furthermore
:
, others parameters explained variance, such as the VOC-increased virulence (in red) at �rst

or more notably the interactions between parameters progressively increasing over time reaching half of the

variance explained at the end of the year.225

3.3 Inferred dynamics

By parameterizing our model with existing data and inferring additional parameters, we could estimate past

epidemic dynamics and investigate scenarios for future trends (Figure 5). The vaccinal coverage modeling

::::::::
modelling

:
did follow quite well real data, even though dissimilarities emerged in the summer (corresponding

to the French summer holidays).230

We may also observe a slight rebound in infected individuals mid-March, which follows by two weeks

the end of the winter holidays. We also see this phenomenon on the new hospital admissions (Figure 6), with

a supplementary delay corresponding to the delay between infection and hospital admissions.

It seems that the current vaccination rate is not high enough to avoid a new epidemic wave. However,

we observe that the uncertainty is huge and does not allow
::
us to have a precise idea of what might happen.235
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4 Discussion
Mathematical modelling has emerged as a central tool to control and anticipate the SARS-Cov-2 pandemic.

This importance is likely to increase now that vaccination has become the cornerstone of the public health

response
::
in

:::::
many

::::::::
countries. However, limitation

:::
the

::::::::::
limitations of current vaccination models lies

:
lie

:
in

either neglecting memory e�ects or compensating by highly dimensional models with dozens of ordinary240

di�erential equations. In this study, we used partial di�erential equations to develop a model than can capture

:::::
model

:
medium and long term hospital admission dynamics in a population with natural and vaccine-induced

immunity only with 8 general compartments.

Regarding the
::
To

:::::::
identify

:::
the

:::::::::::
components

::
of

::::
our

:::::
model

::::
that

:::::::
a�ected

:::
the

::::::
results

:::::
most,

:::
we

:::::::::
conducted

::
a

:::::
global sensitivity analysis,

::::::
which

:::::::
revealed

:::
that

:
the contact matrix unexpectedly

:::::::
between

:::
age

::::::
classes

::::::::
strikingly245

contributed more variance in daily hospital admissions than the VOC related increase of virulence itself.

This predominant role is somehow surprising because although there are transmission and sensitivity
:

is

:::::::::::
susceptibility

::
to

:::::::::
infection di�erences based on age (e.g.

::
e.g.

:
[Davies, Klepac, et al., 2020]), the strongest

age di�erences appear in the IFR. And more precisely, contact to
::::::::::::
Furthermore,

::
in

:::
our

:::::::
results,

:::::::
contacts

:::
of

younger age groups appeared to be the most important contributor to outcome variance
::

the
:::::::
variance

:::
of

:::
the250

:::::::
outcome, although they were, and by far, the less likely to be hospitalized.

An important limitation of the model is that the contact matrix is assumed not to vary over the course of

::::::::::
throughout a simulated epidemic. As suggested by the temporal variance in the SPF matrix data (Figure 2),

this may be oversimplistic. For instance, we observed a di�erence of patterns in simulations whether they

assumed an high or low contact rates among younger age-classes
::
age

::::::
classes (as shown on

::
in Supplementary255

Figure S4). A baseline for the di�erent contacts rates, if such a concept can even exist biologically, would

most likely be impossible to determine because of the variety of events over a year inducing changes in social

interactions such as calendar events (e.g. school holidays), implementation of control policies (e.g. lockdown,

curfew), or even mediatization
:::::
media

::::::::
coverage of the epidemic (resulting in spontaneous behavioural change

with respect to the perception of the epidemic).260

The importance of the age-structure of the host population in shaping Covid-19 epidemics is widely

acknowledged. However, this e�ect is usually studied in the clinical context of disease severity and less so for

transmission dynamics [Salje et al., 2020; Sofonea et al., 2021]. However,
::::
there

:::
are

:::::::::
exceptions

:::::
and, using

a PDE formalism, Richard et al. [2021] �nd the population structure to be the parameter that brings the

::::::::::
contributed

:
relatively the most variance to their model’s output. Both Richard et al. [2021] and Keeling,265

Hill, et al. [2021] use a constant contact matrix, but they explore the impact of age-di�erentiated NPI policies.

That being said, none of those studies (including ours), are able to fully assess the role of the age-structure

since there is potentially additional unknown patterns impacting
::::
could

::::::::::
potentially

:::::::
impact medium-term

forecasting. For example, in absence of external data,
:

it seems impossible to distinguish between the “true

contact matrix” and
::::

from age-di�erentiated NPI policies. The problem is that the two would likely yield270

di�erent outputs in NPI-lifting scenarios.

The variance brought
::::::::
Although

:::
the

:::::::
variance

::::::::::
contributed

:
by the other parameters is quite low, even if we

can mention some such as
::::
low,

::::
there

::
is

:
a
:::::::::
noticeable

:::::
e�ect

::
of the increase in virulence associated with infections

caused by VOCs. The originality of our approach is that it shows that this e�ect represents a large fraction

(nearly
::::
Our

::::::::
approach

::::::
allows

::
us

::
to

::::::::
quantify

:::
this

:::::
e�ect

:
(20 % ) of the observed variancein hospital admissions275

for a wide range of parameters
::
of

:::
the

:::::::
variance)

::::
and

::::
even

:::::::
identify

::
its

:::::
peak

:::::::::::
contribution

:::
(in

:::
the

::::::::
declining

:::::
phase

::
of

:::
the

::::::::
epidemic

:::::
peak). Note that the relative importance of virulence is less

::::
lower

:
in the prospective part of

the model (i.e. after August 2021) but this is potentially because other parameters such as the ones related to

vaccination and interactions became
:::::::
between

::::::::::
parameters

:::::::
become more important over time. We also did not

consider an increase in virulence in the δ VOC compared to the α VOC (but recent data shows this might280

very well be the case [Sheikh et al., 2021]).

The generation time Weibull’s scale parameter, which has an impact on the mean generation time, also

a�ects hospital admission dynamics, especially in June/July and in November/December . However, we

shall put it
:::::
2021.

:::::::::
However,

:::
this

:::::
needs

::
to

:::
be

:::
put

:
in perspective since the impact of this parameter arise

:::::
arises

only when there is few
::::
little variance (Figure S3) and a decreasing epidemic (Figure 6). This can be explained285
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by the fact that a shorter mean generation time for a given reproduction number is known to increase the

epidemic’s growth rate [Nishiura, 2010; Wallinga and Lipsitch, 2007]. On this aspect, it might be relevant to

note
:
is
::::::
worth

::::::
noting that the δ VOC seems to have a shorter generation time than the wildtype strain which

:::
and

::::
this was not taken into account

::
in

:::
this

::::::
model [Zhang et al., 2021].

By applying our model to the context of the French epidemic, we show that vaccination is unlikely to290

be able
:::
the

::::::::::
vaccination

:::::
levels

:::::::
reached

::
in

::::
the

:::::::
summer

:::::
2021

::::
were

::::::::::
insu�cient

:
to prevent a new epidemic on

its own without the use of non-pharmaceutical interventions (NPIs).
::::
wave,

:::::
even

::
in

:::
the

::::::::
scenarios

::::
with

:::::
good

::::::
vaccine

::::::::
coverage

:::
and

:::::::
e�cacy

:::
(i.e.

::::
the

:::::
lower

::::::
bound

::
of

:::
the

::::::::::
con�dence

::::::::
interval). A strong caveat

::
to

:::::::::
extending

:::
this

::::::
model

::
to

::::::
longer

:::::
time

:::::
scales is that anticipating variations in the vaccination rate is extremely di�cult

as it relies on sociological factors. Increasing the uncertainty range for this parameter would most likely in-295

crease the variance in the sensitivity analysis. However, given past vaccination dynamics, we do not expect

this to qualitatively a�ect the results. Regarding the medium-term forecasting, we did not include potential

weather-related variations in behaviour or infectivity, which have been reported for SARS-CoV-2
::::::::
estimated

::
to

:::::::
account

:::
for

::
15

::
to

::::
20%

:::
of

:::
the

::::::::
variations

::
in

::::::::
temporal

::::::::::::
reproduction

:::::::
number

:
[Ma et al., 2021].

To analyse our model, we had to make a number of
:::::
several

:
simplifying assumptions, which are com-300

mon to di�erential equation-based models. The two major ones are the lack of spatial heterogeneity and the

contact homogeneity among a given age-class
:::
age

::::
class. The lack of spatial heterogeneity implies an identical

contact rate across the whole country. This is not problematic at the start of an epidemic but is not adapted

for long-term modelling as it a�ects
:::
the persistence of the disease [Lloyd and R. M. May, 1996; Hagenaars,

Donnelly, and Ferguson, 2004]. Furthermore, age contact patterns allow us to capture some of the hetero-305

geneity in the population but there could be other social heterogeneities that could, for instance, correlate

with vaccination status. As shown in the case of
:::
the in�uenza virus, these could a�ect epidemiological dy-

namics [Barclay et al., 2014].

One advantage of this PDE model is the restrained number of compartments. An alternative to the

problem for ODE system based models would be to chain and multiply compartments. This ,
:::::::::

especially310

::::::::
compared

::
to

::
a

::::::
classical

:::::::::
alternative

::
in

::::::::::
ODE-based

:::::::
models

:::::
which

:::::::
consists

::
of

:::::::
chaining

::::
and

::::::::::
multiplying

:::::::::::::
compartments.

:::
For

:::
the

:::::
latter,

::::
this

:
would also require rewriting the formalism, depending on whether we consider a

:
short,

medium
:
, or long-term temporal scale. Here, this problem can be alleviated by PDE models , such as the one

presented in our study due to the presence of memory structures. The same model could
::
In

::
a
::::
way,

:::::
PDE

::::::
models

:::::
allow

:::
one

:::
to

::::::
explore

:
a
:::::
great

::::::
variety

::
of

:::::::::
biological

::::::::
scenarios

:::::::
without

::::::
adding

:::
any

:::::::::::::
compartments

::::::
thanks315

::
to

:::
the

::::
time

:::::
since

::
an

:::::
event

:::::::::
(infection,

::::::::
recovery,

::
or

:::::::::::
vaccination)

::::::::
structure,

::::
only

:::
by

::::::
varying

:::
the

::::::::::::::
"age-since-event

:::::::::
functions".

::::::::::
Therefore,

:::
the

:::::
same

::::::
model

:::
can

:
be used to monitor new hospital admissions or the need of

:::
for

a new vaccination campaign years later if it happen to have
:
in

::::
the

:::::::
presence

:::
of

:::::::
immune

:::::::
waning,

:::
i.e.

:
a time-

induced loss of immunity.

Another advantage of the PDE formalism is that our model can be extended in several ways without320

adding any compartments thanks to the structuring in time since an event (infection, recovery, or vaccination).

For instance, we could account for a di�erence in the
:::::::::
di�erential building up of vaccine immunity in suscep-

tible versus recovered individuals. This would be consistent with the fact that the latter enter the vaccinated

compartment at a later vaccination age
::::::::::
‘vaccination

:::
age’

:
(i.e. k > 0) and a single vaccine dose appears to be

su�cient to build strong immunity [Mazzoni et al., 2021]. Also, in the context of waning immune
::::::::
immunity,325

our model can be used to investigate the long-term bene�ts or costs of implementing vaccine boosters de-

pending on assumptions regarding vaccine e�cacy or
:::
the

:
duration of natural immunity. More generally, we

can
::::::
readily investigate the e�ect

:
of

:
implementing age-strati�ed vaccination policies.

One downside for PDE system based model we can think of is an higher computation time
::::::::::

Undeniably,

::::
PDE

:::::::::
formalism

:::::::
requires

:
a
::::::
greater

::::::::::
investment

::
to

::::::::::
implement

::::::
simple

::::::
models.

::::::::::::
Furthermore,

::::::::
deriving

::::::::
analytical330

:::::
results

::
is
:::::

more
:::::::::::

challenging,
::
as

:::::::::
illustrated

:::
by

::::
our

:::::::::
calculation

:::
of

:::
the

:::::
basic

::::::::::::
reproduction

:::::::
number.

:::::::::
Another

::::::::
potential

::::::::
downside

::
is

:::
that

::::
the

:::::::::::
computation

::::
time

:::
for

::::::::::
simulation

:::
can

:::::::
increase

::::::
rapidly.

On a more prospective side, such a model could be used
:::
our

::::::
model

:::::
o�ers

:::::::::
promising

::::::::::
possibilities to inves-

tigate virus evolution with explicit
::::::
because

::
it
:::
can

::::::::
explicitly

:::::::
capture

:::
the

:
interplay between change in suscep-

tibility, contagiousness, virulence and immune escapes (post-infection and vaccine) and trade-o�s between335

them.
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Figure S1: Illustrating the impact of memory on the the time spent in a compartment.
:::::::::::
Illustrating

:::
the

:::::::
impact

::
of

::::::::
memory

:::
on

::::
the

:::::
time

:::::
spent

:::
in

:
a
::::::::::::::
compartment. Providing memory to any compartment

might yield di�erent results in terms of epidemic dynamics. As illustrated here, in both cases half of the

people leave the compartment at approximately twelve days. However, the number of people still in the

compartment at 5 or 30 days might be radically di�erent, given the initial population, whether memory is

provided or not.

Table S1: Parameters range used in the sensitivity analysis. Further explanations are provided in Sup-

plementary Methods B, especially when assumptions are made.

Parameter Interval References
Virulence increase (κ) due to α
VOC

[1.37− 1.93] Davies et al. [2021]; Challen et al.

[2021]

Initial proportion of recovered [0.137− 0.169] Hozé et al. [2021]

Scale parameter generation time [1.75− 4.7] Ferretti et al. [2020]

Shape parameter generation

time

[4.7− 6.9] Ferretti et al. [2020]

Contact matrix Columns randomly drawned See Section 2.5

Final transmission reduction [0.71− 0.79] By assumption

Final infection immunity [0.78− 0.99] Public Health England [2021]

Final total reduction of severity [0.87− 0.99] Public Health England [2021]

Final number of vaccinated

people

[5− 5.5] · 10
7

By assumption
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Figure S2: Temporal dynamics of vaccine e�cacy. The double sigmoid is intended to re�ect a two-doses

vaccination schedule. The colors show the di�erent types of protection conferred by the vaccine. The dif-

ferent e�cacy levels remain constant over time after the second dose (no immune waning). Data used to

calibrate these curves originate from the analyses of the P�zer-BioNTech vaccine by Public Health England

[2021]. Note that the “Total reduction of severity” also accounts for infection immunity.
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Figure S3: Non-normalised sensitivity analysis results. The output is similar to that in Figure 4 but we

show, for each time step, the raw variance originating from the di�erent parameters instead of the relative
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Figure S4: Younger age classes contact rates e�ect on hospital admission dynamics. We show 100

randomly selected trajectories among runs made with younger age-classes having the lowest (resp. highest)

contact rates. We selected 50 trajectories among runs made with the 3 contacts matrices having the lowest

(resp. highest) contact rates among [0− 9] y.o., plus 50 for the [10− 19] y.o.
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A Model
System (1)–(16) is considered under the following general assumption

Assumption S1 1. pa ∈ [0, 1], and ifra ∈ [0, pa] for all a ∈ R+;

2. ρ ∈ L∞+ (R+ × R+), with 0 ≤ ρ(t, a) ≤ 1, for all (t, a) ∈ R+ × R+;

3. ε(·, ·), ξ(·, ·), ν(·, ·) ∈ L∞+ (R+ × R+) with 0 ≤ ε(·, ·), ξ(·, ·), ν(·, ·) ≤ 1
::::::::::::::::::::::::::::::
ε(a, ·), ξ(a, ·), ν(a, ·) ∈ L∞+ (R+),565

::
for

:::
all

::::::::
a ∈ R+,

::::
and

::::::::::::::::::::::::::
0 ≤ ε(a, ·), ξ(a, ·), ν(a, ·) ≤ 1;

4. σ(·, ·), µ(·, ·), γm(·, ·), γs(·, ·), γmv(·, ·), ω(·, ·) ∈ L∞+ (R+ × R+)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
σ(a, ·), µ(a, ·), γm(a, ·), γs(a, ·), γmv(a, ·), ω(a, ·) ∈ L∞+ (R+),

::
for

:::
all

:::::::
a ∈ R+;

5. K ∈ L∞+ (R+ × R+);

6. Transmission rates satisfy β` ∈ L∞+ (R+ × R+) for each ` ∈ {m, s,mv}.570

A.1 Implementation

The model was implemented in R [R Core Team, 2021], using Rcpp [Eddelbuettel and François, 2011] to

maximize computational e�ciency.

The PDE system was implemented using an Euler explicit scheme.

A.2 Well-posedness575

Let us introduce the Banach space

X = L1(R+)×L1(R+,R3)×L1(R2

+,R3)×L1(R2

+)×L1(R3

+)×L1(R+)×L1(R2

+)×L1(R+)×L1(R2

+),

as well as its positive cone

X+ = L1

+(R+)× L1(R+,R3

+)× L1(R2

+,R3

+)× L1

+(R2

+)× L1

+(R3

+)×
L1

+(R+)× L1

+(R2

+)× L1

+(R+)× L1

+(R2

+).

Now, we de�ne the subspaces Y1 ⊂ L1(R2

+,R3), Y2 ⊂ L1(R3

+), Y3, Y4 ⊂ L1(R2

+) by:

Y1 =

{
ϕ : (a, i) 7−→ ϕ(a, i), ϕ ∈ L1(R2

+,R3) :
∂ϕ

∂i
∈ L1(R2

+,R3)

}

Y2 =

{
ϕ : (a, i, k) 7−→ ϕ(a, i, k), ϕ ∈ L1(R3

+) :
∂ϕ

∂i
∈ L1(R3

+),
∂ϕ

∂k
∈ L1(R3

+)

}
.

Y3 =

{
ϕ : (a, j) 7−→ ϕ(a, j), ϕ ∈ L1(R2

+) :
∂ϕ

∂j
∈ L1(R2

+)

}
Y4 =

{
ϕ : (a, k) 7−→ ϕ(a, k), ϕ ∈ L1(R2

+) :
∂ϕ

∂k
∈ L1(R2

+)

}
.

It follows that there exists a unique linear operator Π` ∈ L(Y2, L
1(R2

+)) for each ` ∈ {1, 2} such that

Π1ψ = ψ(·, 0, ·) and Π2ψ = ψ(·, ·, 0) for all ψ ∈ Y2. Next, let A : D(A) ⊂ X → X be the linear

operator on the domain

D(A) =L1(R+)× {0L1(R+,R3)} × Y1 × {0L1(R2

+)} × (Y2 ∩ ker(Π2))×
(
W 1,1(R2

+,R) ∩ ker(Π2)
)

× {0L1(R+)} × Y3 × {0L1(R+)} × Y4,
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and de�ned by

A



S
0L1(R+,R3)

ϕi

0L1(R2

+)

ψ
0L1(R+)

ϕj

0L1(R+)

ϕk


=



0

−ϕi(·, 0)
−∂iϕi − diag [γm, γs, µ]ϕi

−Π1ψ
−∂iψ − ∂kψ − γmvψ

−ϕj(·, 0)
−∂jϕj − σϕj
−ϕk(·, 0)

−∂kϕk − σvϕk


.

Finally, let us introduce the following nonlinear map F : D(A)→ X :

F (t, φ(t, a)) =

−λ(t, a)S(t, a)− ρ(t, a)S(t, a) +
∫ jmax

0
σ(a, j)R(t, a, j)dj +

∫ kmax

0
σv(a, k)V (t, a, k)dk

(1− pa)λ(t, a)S(t, a)

pa

(
1− ifra

pa

)
λ(t, a)

[
S(t, a) +

∫ kmax

0
(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
ifra λ(t, a)

[
S(t, a) +

∫ kmax

0
(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]


0

[1− ε(a, k)] [1− (1− ν(a, k))pa]λ(t, a)V (t, a, k)
0∫ imax

0

[
γs(a, i)Is(t, a, i) + γm(a, i)Im(t, a, i)

]
di

−ρ(t, a)R(t, a, j)

ρ(t, a)S(t, a) + ρ(t, a)
∫ jmax

0
R(t, a, j)dj

−(1− ε(a, k))λ(t, a)V (t, a, k) +
∫ imax

0
γmv(a, i)Imv(t, a, i, k)di



.

wherein φ(t) is the function:

φ(t) =
(
S(t, ·), 0, Im(t, ·, ·), Is(t, ·, ·), Id(t, ·, ·), 0, Imv(t, ·, ·, ·), 0, R(t, ·, ·), 0, V (t, ·, ·)

)
∈ D(A).

From here, System (1)–(16) rewrites as the following nondensely de�ned Cauchy problem:

dφ(t)

dt
= Aφ(t) + F (t, φ(t)), t > 0,

φ(0) =
(
S0, 0, Im

0
, Is

0
, Id

0
, 0, Imv

0
, 0, R0, 0, V0

)
∈ D(A) ∩X+.

(S1)

Therefore, under Assumption S1, we have the well-posedness of System (S1); that is, the Cauchy problem

(S1) generates a unique globally de�ned, positive and bounded non-autonomous semi�ow.580

The proof of this result is based on a rather standard methodology combining an integrated semigroup

approach and Volterra integral formulation in the context of multiple structured variables (e.g., Richard,

Choisy, et al. [2022] and the references therein) and existence of the semi�ow for non-autonomous systems

(e.g., [Pazy, 2012; Magal, 2001]).

A.3 Basic reproduction number and NPI policices585

We consider that there are no vaccinated, i.e ρ(t, a) ≡ 0 and V (t, a, k) ≡ 0, nor recovered people, i.e.
R(t, a, j) ≡ 0, and that the number of susceptible individuals is very close to the total population size. For

simplicity, we �rst introduce the “survival” probability (i.e. the probability to remain in the compartment)
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of infected individuals of, respectively, the Im, Is, and Id compartments:

πm(a, i) = exp

(
−
∫ i

0

γm(a, r)dr

)
, (S2)

πs(a, i) = exp

(
−
∫ i

0

γs(a, r)dr

)
, (S3)

πd(a, i) = exp

(
−
∫ i

0

µ(a, r)dr

)
. (S4)

By linearizing System (1)–(16), we obtain the following Volterra formulation for Im, Is, and Id compart-

ments:

Im(t, a, i) =

{
Im

0
(a, i− t) πm(a,i)

πm(a,i−t) for t ∈ [0, i[,

(1− pa)λ0(t− i, a)S0(a)πm(a, i) for t ≥ i,
(S5)

Is(t, a, i) =

I
s
0
(a, i− t) πs(a,i)

πs(a,i−t) for t ∈ [0, i[,

pa

(
1− ifra

pa

)
λ0(t− i, a)S0(a)πs(a, i) for t ≥ i,

(S6)

Id(t, a, i) =

{
Id

0
(a, i− t) πd(a,i)

πd(a,i−t) for t ∈ [0, i[,

ifraλ0(t− i, a)S0(a)πd(a, i) for t ≥ i,
(S7)

with λ0(t, a) de�ned as λ(t, a) with no control policies (c = 0),

λ0(t, a) =

∫ amax

0

K(a, a′)

∫ imax

0

[
βm(a′, i)Im(t, a′, i)+βs(a′, i)Is(t, a′, i) +

βd(a′, i)Id(t, a′, i)

]
di da′.

Let IN (t, a) = λ0(t, a)S(0, a) be the density of newly infected of age a at time t. Then, by (S5)–(S7) it

comes

IN (t, a) = S0(a)

∫ t

0

∫ amax

0

K(a, a′)Ω(a′, i)IN (t− i, a′)da′di+ f(t, a), (S8)

where590

Ω(a, i) = βm(a, i)(1− pa)πm(i) + βs(a, i)pa

(
1− ifra

pa

)
πs(i) + βd(a, i) ifra πd(i),

and f(t, a) is accounting for the initial population.

The basic reproduction numberR0 is then the spectral radius, denoted by r(U), of the next generation

operatorU de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ imax

0

∫ amax

0

K(·, a′)Ω(a′, i)v(a′)da′di.

For parametrization purpose, we assume that the contact matrixK(·, ·) is given up to a positive constant

β (to be determined), such thatK(·, ·) = βK(·, ·), andK satis�es

∑
i

∑
jK(ai, aj) = 1. Consequently,595

we �nd that β is given by

β =
R0

r
(
U
) , (S9)

whereU is the operator de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ amax

0

K(·, a′)Ω(a′)v(a′)da′,
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with

Ω(a) =

∫ imax

0

[
(1− pa)βm(a, i)πm(i) + pa

(
1− ifra

pa

)
βs(a, i)πs(i) + ifraβ

d(a, i)πd(i)

]
di.

Note that, within this paper, we scaleK(·, ·) by

β∗ := (1− c)2β =
(1− c)2R0

r
(
U
)

rather than β since the NPI level e�cacy was �tted beforehand on real data.

To go further steps in the computation of r(U), in addition to the general Assumption S1, we also assume600

that

Assumption S2 Functions S0,K,Ω are positive almost everywhere.

Then, we can show that r(U) is given by the spectral radius of the following linear operator, de�ned from

L1

+([0, amax],R) into itself:

v 7−→
∫ amax

0

K(·, a′)Ω(a′)S0(a′)v(a′)da′.

The spectral radius of this later operator is computed easily since the agea is numerically divided inton ∈ N∗605

classes , so that the term inside the integral of the latter equation is a n × n matrix. Finally, the scaling

parameter β is obtain from (S9).

Importantly, the symmetric property of the contact matrix K is not strictly necessary for the the com-

putation of r(U). However, in addition to Assumptions S1 and S2, if K is a symmetric function, then the

Rayleigh quotient formulation leads to (see Proposition F.2 in Richard, Alizon, et al., 2021)610

r(U) = sup
v∈L2([0,amax],R)
‖v‖L2([0,amax],R)=1

∫ amax

0

∫ amax

0

K(a, a′)

√
S0(a′)Ω(a′)

√
S0(a)Ω(a)v(a′)v(a)da′ da.

B Model parametrization
In this section, we describe the parametrization and the assumptions made in the main text. The uncertainty

ranges retained for each parameter are displayed in the Table S1.

B.1 Proportion of severe cases, IFR and increase in virulence

The proportion of severe cases corresponds here to the fraction of the population who will be hospitalized615

following a SARS-CoV-2 infection. This parameter is age-dependent and follows the infection fatality rate

(IFR) by Verity et al. [2020].

However, studies show that the virulence of the infection increased (taken into account by theκ parame-

ter) by more than 60% with theαVOC [Davies et al., 2021; Challen et al., 2021]. Estimation for the δ VOC

are still at an early stage, so we used the virulence from the α VOC, even if the former seems more virulent620

[Sheikh et al., 2021].

B.2 Generation time and transmission rates

For the underlying generation time, we use that provided by Ferretti et al. [2020], which follows a Weibull

distribution, with a shape parameter of 2.826 (95% CI [1.75− 4.7]) and scale parameter of 5.665 (95% CI

[4.7−6.9]). We assume that the transmission rates from mild infectionsβm(a, i) and severe casesβs+d(a, i)625

are equal to the generation time corrected by the probability for individuals to leave their infected compart-

ment.
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B.3 Recovery rates

From the data shown in Salje et al. [2020], we retrieve the time severely-infected individuals spend as infected,

whether they required ICU admission or not, by adding up the di�erent exponential distributions of the630

di�erent infected compartments of their model (which will be denoted E1, E2, Ihosp
, Inon ICU

, I ICU
, H1,

H2, HICU, ICU 1, ICU 2 in a later study by Kiem et al. [2021]). This gives us the probability of remaining

in the infected compartment over time, thereby allowing us to infer the recovery rates. We also know from

Lefrancq et al. [2021] the probability for hospitalized individuals to require ICU admission, which provides

us with appropriate recovery rates weighting for severe cases.635

We apply the same method for mildly-infected individuals.

B.4 Initial conditions

For this PDE model, the initialization is not as straightforward as for ODE models since within a compart-

ment individuals do not have the same age of infection (for infected individuals) or time since clearance

(for recovered individuals). Initializing
:::::::::
Initialising over all the domain of de�nition of each compartments640

:::::::::::
compartment

:
is di�cult since a uniform initialization would almost immediately be counterbalanced by a

higher probability to leave the compartment for higher ages (i.e. i > 0 and j > 0). Put di�erently, this would

produce distributions di�erent from what we might expect with a constant in�ow in the compartments. To

overcome this issue, we start the di�erent runs with a 45 days delay (not shown) in order to let the di�erent

compartments stabilize around some
:::::::
stabilise

::::::
around

:
a
:
distribution.645

Hozé et al. [2021] estimate that the proportion of recovered adults in France was of 0.149 (95% CI

[0.132 − 0.169]) on January 15th, 2021. For simplicity, and in absence of more detailed data, we assumed

this proportion to be constant across age classes, including the younger age groups.

For infected individuals, we initialize the density with a qualitative value. The β coe�cient associated to

theR0 and the NPI was
::::
were �tted such that the number of daily hospital admissions was close to the real650

data. The overall number of infected individuals in the model at
::
on January 1st , was around 267, 000 [170, 000−

310, 000].

B.5 Vaccine properties

We assume that the three types of vaccine e�cacies (against infection, severe forms, and transmission) follow

a double-sigmoid temporal pattern starting from the day of injections (Figure S2). The reduction in trans-655

mission rate corresponds to function ξ(a, k) in our model, the infection immunity corresponds to function

ε(a, k). The total reduction of virulence corresponds to the cumulative e�ects of ε(a, k) and ν(a, k).

The order of magnitude of the �nal (full) e�cacy levels are
:
is
:

based on that from the P�zer-BioNTech

vaccine after two doses provided by Public Health England [2021]. However, note that the outcomes ref-

erenced in the report were used as overall proxy in this study (“symptomatic disease” and “infection” for660

ε(a, k), “hospitalisation” and “mortality” for ν(a, k) and “transmission” for ξ(a, k)) as they do not exactly

match our implementation. The reduction of transmission estimation of 14 days after the second dose was

not available, so we applied a rule of thumb so that
::
in

::::
order

:
the increase between the two injections was simi-

lar to the other vaccine properties. Hence, we assume a 75% e�cacy for transmission reduction 14 days after

the second dose.665

We also assume there was no di�erence in e�cacy between age classes, and that the di�erent e�cacy

levels remains
::::::
remain constant 14 days after the second dose until the end of our projections (i.e. no immune

waning).

B.6 Vaccination rate

We model the vaccination rate using a sigmoid function,670

f(t; θ1, θ2, vtot) =
vtot

1 + exp
(
θ1−t
θ2

) ,
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where vtot denotes the total number of vaccinated individuals at the end of the year (which is a model input),

and θ1 and θ2 are the sigmoid curve parameters �tted to the observed data. This gives us the number of newly

vaccinated people at each time step.

The number of doses attributed to each age-group at each time step depends on initial weights (ωa(t0)),

which can be interpreted as the age-based strategy vaccination prioritization, the proportion of the age group675

targeted (ta), assuming that the total number of vaccinated in each age class may vary and is lower than 100%,

and the proportion of individuals already vaccinated within each age-group at time t (pv(t, a)).

Therefore, at time t+ ∆t, the splitting of the number of doses is given by ωa(t+ ∆t) which is de�ned

by

ωa(t+ ∆t) =
$a(t+ ∆t)∑
a$a(t+ ∆t)

with $a(t+ ∆t) = ωa(t0) · (ta − pv(t, a)).

Finally, we have680

ρ(t, a) · [S(t, a) +R(t, a)] = ωa(t) · f(t; θ1, θ2, vtot).

The initial weights, ωa(t0), and ta is �tted on a
::
an ordinary least squares metric to reproduce at best the

real vaccination rate.

Vaccination is assumed to start on January, 1st, 2021.

B.7
::::
Age

:::::::
groups

:::
The

::::::::
di�erent

::::
data

::::::
sources

:::
we

::::
used

:::
had

::::::::::::::::
non-homogeneous

:::
age

:::::::
groups,

:::
and

:::::
these

::::::
groups

:::::::::
sometimes

::::::::::
overlapped.685

:::
For

::::::::
instance,

:::
the

:::::::
contact

:::::::
matrices

::::
were

::::::::
provided

:::
by

:
5
:::::
years

::::
bins,

:::::
while

::::
the

:::::::::
parameters

::::::
related

:::
to

:::
the

::::::
disease

::::::
severity

:::::
were

::::::::
provided

::
by

:::
10

::::
years

:::::
bins.

:::
On

:::::::
another

:::::
hand,

:::::::::::
vaccination

::::
data

::::
were

::::::::
provided

::::
with

::::
age

::::::
groups

:::::
better

::::::::
re�ecting

:::
the

:::::::
French

::::::
society

::::::::
structure

::::
(0-4,

::::
5-11,

::::::
12-18,

::::::::
18-24. . . ).

:

:::
We

:::::::
decided

::
to

:::
use

::
10

:::::
years

::::
bins

:::
age

::::::
groups

:::::
since

:
it
::::
was

:::
the

::::::
option

::::
that

:::::::
required

:::
less

::::
data

::::::::::::::
transformation.

690

C Sensitivity analysis
To perform the sensitivity analysis, we use the lhs package [Carnell, 2020] to generate a Latin Hypercube

Sample (LHS). The parameters were drawn in a uniform distribution within the con�dence interval speci�ed

for each parameters
::::::::
parameter and shown in Table S1.

For each parameter combination, a model run was computed. In total, 30, 400 model runs were per-695

formed. Then, for each time step, we used the multisensi package [Bidot, Lamboni, and Monod, 2018]

to compute the Sobol main indices, given by

Si =
Var(E[Y |Xi])

Var(Y )
,

as implemented in the sensitivity package [Iooss et al., 2021]. The di�erence between the sum of all

the main indices and 1 corresponds to the e�ect of interactions between parameters. More explanations are

available in Saltelli et al. [2008].700

Due to numerical approximations, some indices may sometimes be negative (the lowest was −0.004).

These were rounded to 0.

29



References
Bidot, Caroline, Matieyendou Lamboni, and Hervé Monod (2018). multisensi: Multivariate Sensitivity Anal-

ysis. R package version 2.1-1. url: https://CRAN.R-project.org/package=multisensi.705

Carnell, Rob (2020). lhs: Latin Hypercube Samples. R package version 1.1.1. url: https://CRAN.R-
project.org/package=lhs.

Challen, Robert et al. (Mar. 2021). “Risk of mortality in patients infected with SARS-CoV-2 variant of

concern 202012/1: matched cohort study”. en. In: BMJ 372. Publisher: British Medical Journal Pub-

lishing Group Section: Research, n579. issn: 1756-1833. doi: 10.1136/bmj.n579. url: https:710

//www.bmj.com/content/372/bmj.n579 (visited on 06/02/2021).

Davies, Nicholas G. et al. (May 2021). “Increased mortality in community-tested cases of SARS-CoV-2 lin-

eage B.1.1.7”. en. In: Nature 593.7858. Number: 7858 Publisher: Nature Publishing Group, pp. 270–

274. issn: 1476-4687. doi: 10.1038/s41586-021-03426-1. url: https://www.nature.com/
articles/s41586-021-03426-1 (visited on 06/02/2021).715

Eddelbuettel, Dirk and Romain François (2011). “Rcpp: Seamless R and C++ Integration”. In: Journal
of Statistical Software 40.8, pp. 1–18. doi: 10 . 18637 / jss . v040 . i08. url: https : / / www .
jstatsoft.org/v40/i08/.

Ferretti, Luca et al. (May 2020). “Quantifying SARS-CoV-2 transmission suggests epidemic control with

digital contact tracing”. en. In: Science 368.6491. Publisher: American Association for the Advance-720

ment of Science Section: Research Article. issn: 0036-8075, 1095-9203. doi: 10.1126/science.
abb6936. url: https://science.sciencemag.org/content/368/6491/eabb6936 (visited

on 06/01/2021).

Hozé, Nathanaël et al. (June 2021). “Monitoring the proportion of the population infected by SARS-CoV-

2 using age-strati�ed hospitalisation and serological data: a modelling study”. en. In: The Lancet Pub-725

lic Health 6.6, e408–e415. issn: 2468-2667. doi: 10 . 1016 / S2468 - 2667(21 ) 00064 - 5. url:

https://www.sciencedirect.com/science/article/pii/S2468266721000645 (visited

on 06/07/2021).

Iooss, Bertrand et al. (2021). sensitivity: Global Sensitivity Analysis of Model Outputs. R package version

1.25.0. url: https://CRAN.R-project.org/package=sensitivity.730

Kiem, Cécile Tran et al. (Aug. 2021). “A modelling study investigating short and medium-term challenges for

COVID-19 vaccination: From prioritisation to the relaxation of measures”. English. In: EClinicalMedicine
38. Publisher: Elsevier. issn: 2589-5370. doi: 10.1016/j.eclinm.2021.101001. url: https://
www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00281-9/fulltext
(visited on 09/25/2021).735

Lefrancq, Noémie et al. (2021). “Evolution of outcomes for patients hospitalised during the �rst 9 months

of the SARS-CoV-2 pandemic in France: A retrospective national surveillance data analysis”. en. In: The
Lancet Regional Health - Europe 5, p. 100087. issn: 26667762. doi: 10.1016/j.lanepe.2021.
100087. url: https://linkinghub.elsevier.com/retrieve/pii/S2666776221000648
(visited on 04/30/2021).740

Magal, Pierre (2001). Compact attractors for time-periodic age-structured population models. url: https:
//www.elibm.org/article/10003097 (visited on 08/16/2021).

Pazy, Amnon (2012). Semigroups of linear operators and applications to partial di�erential equations. Vol. 44.

Springer Science & Business Media.

Public Health England (2021). COVID-19 vaccine surveillance report - week 23. en. Tech. rep. Public Health745

England, p. 22.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statis-

tical Computing. Vienna, Austria. url: https://www.R-project.org/.

Richard, Quentin, Samuel Alizon, et al. (Mar. 2021). “Age-structured non-pharmaceutical interventions for

optimal control of COVID-19 epidemic”. en. In: PLOS Computational Biology 17.3. Publisher: Public750

Library of Science, e1008776. issn: 1553-7358. doi: 10 . 1371 / journal . pcbi . 1008776. url:

30

https://CRAN.R-project.org/package=multisensi
https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs
https://doi.org/10.1136/bmj.n579
https://www.bmj.com/content/372/bmj.n579
https://www.bmj.com/content/372/bmj.n579
https://www.bmj.com/content/372/bmj.n579
https://doi.org/10.1038/s41586-021-03426-1
https://www.nature.com/articles/s41586-021-03426-1
https://www.nature.com/articles/s41586-021-03426-1
https://www.nature.com/articles/s41586-021-03426-1
https://doi.org/10.18637/jss.v040.i08
https://www.jstatsoft.org/v40/i08/
https://www.jstatsoft.org/v40/i08/
https://www.jstatsoft.org/v40/i08/
https://doi.org/10.1126/science.abb6936
https://doi.org/10.1126/science.abb6936
https://doi.org/10.1126/science.abb6936
https://science.sciencemag.org/content/368/6491/eabb6936
https://doi.org/10.1016/S2468-2667(21)00064-5
https://www.sciencedirect.com/science/article/pii/S2468266721000645
https://CRAN.R-project.org/package=sensitivity
https://doi.org/10.1016/j.eclinm.2021.101001
https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00281-9/fulltext
https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00281-9/fulltext
https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00281-9/fulltext
https://doi.org/10.1016/j.lanepe.2021.100087
https://doi.org/10.1016/j.lanepe.2021.100087
https://doi.org/10.1016/j.lanepe.2021.100087
https://linkinghub.elsevier.com/retrieve/pii/S2666776221000648
https://www.elibm.org/article/10003097
https://www.elibm.org/article/10003097
https://www.elibm.org/article/10003097
https://www.R-project.org/
https://doi.org/10.1371/journal.pcbi.1008776


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.
1008776 (visited on 06/02/2021).

Richard, Quentin, Marc Choisy, et al. (Feb. 2022). “Human-vector malaria transmission model structured

by age, time since infection and waning immunity”. en. In: Nonlinear Analysis: Real World Applications755

63, p. 103393. issn: 1468-1218. doi: 10.1016/j.nonrwa.2021.103393. url: https://www.
sciencedirect.com/science/article/pii/S146812182100105X (visited on 08/16/2021).

Salje, Henrik et al. (July 2020). “Estimating the burden of SARS-CoV-2 in France”. In: Science 369.6500.

Publisher: American Association for the Advancement of Science, pp. 208–211.doi:10.1126/science.
abc3517. url: https://www.science.org/doi/10.1126/science.abc3517 (visited on760

09/25/2021).

Saltelli, Andrea et al. (2008). Global Sensitivity Analysis: The Primer | Wiley. en-us. Wiley. url: https:
/ / www . wiley . com / en - us / Global + Sensitivity + Analysis % 3A + The + Primer - p -
9780470059975 (visited on 07/27/2021).

Sheikh, Aziz et al. (June 2021). “SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital ad-765

mission, and vaccine e�ectiveness”. English. In: The Lancet 397.10293. Publisher: Elsevier, pp. 2461–

2462. issn: 0140-6736, 1474-547X. doi: 10.1016/S0140-6736(21)01358-1. url: https://
www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01358-1/abstract
(visited on 08/31/2021).

Verity, Robert et al. (June 2020). “Estimates of the severity of coronavirus disease 2019: a model-based analy-770

sis”. English. In: The Lancet Infectious Diseases 20.6. Publisher: Elsevier, pp. 669–677. issn: 1473-3099,

1474-4457. doi: 10.1016/S1473-3099(20)30243-7. url: https://www.thelancet.com/
journals/laninf/article/PIIS1473-3099(20)30243-7/abstract (visited on 06/02/2021).

31

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008776
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008776
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008776
https://doi.org/10.1016/j.nonrwa.2021.103393
https://www.sciencedirect.com/science/article/pii/S146812182100105X
https://www.sciencedirect.com/science/article/pii/S146812182100105X
https://www.sciencedirect.com/science/article/pii/S146812182100105X
https://doi.org/10.1126/science.abc3517
https://doi.org/10.1126/science.abc3517
https://doi.org/10.1126/science.abc3517
https://www.science.org/doi/10.1126/science.abc3517
https://www.wiley.com/en-us/Global+Sensitivity+Analysis%3A+The+Primer-p-9780470059975
https://www.wiley.com/en-us/Global+Sensitivity+Analysis%3A+The+Primer-p-9780470059975
https://www.wiley.com/en-us/Global+Sensitivity+Analysis%3A+The+Primer-p-9780470059975
https://www.wiley.com/en-us/Global+Sensitivity+Analysis%3A+The+Primer-p-9780470059975
https://www.wiley.com/en-us/Global+Sensitivity+Analysis%3A+The+Primer-p-9780470059975
https://doi.org/10.1016/S0140-6736(21)01358-1
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01358-1/abstract
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01358-1/abstract
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01358-1/abstract
https://doi.org/10.1016/S1473-3099(20)30243-7
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30243-7/abstract
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30243-7/abstract
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30243-7/abstract

	Introduction
	Model
	Model overview
	Model parametrization
	Contact matrices
	Model outputs and fitting procedures
	Sensitivity analysis

	Results
	Basic reproduction number and NPIs
	Sensitivity analysis
	Inferred dynamics

	Discussion
	Model
	Implementation
	Well-posedness
	Basic reproduction number and NPI policices

	Model parametrization
	Proportion of severe cases, IFR and increase in virulence
	Generation time and transmission rates
	Recovery rates
	Initial conditions
	Vaccine properties
	Vaccination rate
	Age groups

	Sensitivity analysis

