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Metabolism is the driving force of life and thereby plays a key role in understanding microbial functioning in

monoculture and in ecosystems, from natural habitats to biotechnological applications, from microbiomes

related to human health to food production. However, the complexity of metabolic networks poses a major

challenge for understanding how they are shaped by evolution and how we can manipulate them. Therefore,

many network-based methods have been developed to study metabolism.

With the vast increase of genomic data, genome-scale metabolic networks have become popular use. For these

stoichiometric models, metabolic enzymes are predicted using genome data and subsequently algorithms

are used to add reactions to construct a complete (biomass producing) metabolic network (e.g., Henry et al.,

2010; Machado et al., 2018; see for an overview Mendoza et al., 2019). Many tools are being developed to make

predictions with these models, usually variations of FBA (Orth et al., 2010), but also methods for community

predictions (Scott Jr et al., 2023) and simulations in time and space (Bauer et al., 2017; Dukovski et al., 2021).

The vast amount of sequencing data combined with the high-throughput possibilities of this method make

it appealing, but there is a drawback: Namely that the automated construction of networks lacks accuracy

and often curation is necessary before these models produce realistic and useful results. This is exemplified

by recent studies of microbial metabolism that are better predicted by genome content only than by actual

metabolic models (Gralka et al., 2023; Li et al., 2023).

On the other end are well-curated small-scale models of metabolic pathways. For those, knowledge of the

enzymes of a pathway, their kinetic properties and (optionally) regulation by metabolites is incorporated in

usually a differential equation model. Standard methods for systems of differential equations can be used

to study steady-states and the dynamics of these models, which can lead to accurate predictions (Flamholz
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et al., 2013; van Heerden et al., 2014). However, the downside is that the methods are difficult to scale up

and, for many enzymes, the detailed information necessary for these models is not available. Combined

with computational challenges, these models are limited to specific pathways and cannot be used for whole

cells, nor even communities. Therefore, there is still a need for both methods and models to make accurate

predictions on a scale beyond single pathways.

Corrao et al. (2025) aim for an intermediate size model that is both accurate and predictive, does not need

an extensive set of enzyme parameters, but also encompasses most of the cell’s metabolic pathways. As

they phrase it: a model in the ‘Goldilocks’ zone. Curation can improve genome-scale models substantially

but requires additional experimental data. However, as the authors show, even the well-curated model of

Escherichia coli can sometimes show unrealistic metabolic flux patterns. A smaller model can be better curated

and therefore more predictive, and more methods can be applied, as for example EFM based approaches.

The authors show an extensive set of methodologies that can be applied to this model and yield interpretable

results. Additionally, the model contains a wealth of standardized annotation that could set a standard for the

field.

This is a first model of its kind, and it is not surprising that E. coli is used as its metabolism is very well-studied.

However, this could set the basis for similar models for other well-studied organisms. Because the model is

well-annotated and characterized, it is very suitable for testing new methods that make predictions with such

an intermediate-sized model and that can later be extended for larger models. In the future, such models for

different species could aid the creation of methods for studying and predicting metabolism in communities,

for which there is a large need for applications (e.g. bioremediation and human health).

The different layers of annotation and the available code with clear documentation make this model an ideal

resource as teaching material as well. Methods can be explained on this model, which can still be visualized

and interpreted because of its reduced size, while it is large enough to show the differences between methods.

Although it might be too much to expect models of this type for all species, the different layers of annotation

can be used to inspire better annotation of genome-scale models and enhance their accuracy and predictability.

Thus, this paper sets a standard that could benefit research on metabolic pathways from individual strains to

natural communities to communities for biotechnology, bioremediation and human health.
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Reviews

Evaluation round #2

DOI or URL of the preprint: https://doi.org/10.48550/arXiv.2406.16596
Version of the preprint: 3

Authors’ reply, 22 April 2025

Download author’s reply

Decision by Meike Wortel , posted 07 April 2025, validated 07 April 2025

Thank you for your resubmission. You have responded satisfactory to all points raised by the reviewers

and I can recommend your article. However, I did see a few points that could improve the readability of your

article. I invite you to have a look at these suggestions and decide to incorporate them for a final version:

1. Figure 3: The caption (and text) refers to the EcoCyc database, but panel A refers to the Biocyc database

2. In your article you wrote: “Notably, the annotations pointing to EcoCyc, the main knowledgebase for E.

coli, are complete: every metabolic reaction in iCH360 is uniquely mapped to a corresponding EcoCyc

ID (with the exception of three reactions, for which a match on the database could only be found for a

different choice of redox cofactor, namely NADH instead of NADPH).” ===> This can be misunderstood,
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because if it misses three reactions, it is not complete. Would “nearly complete” be a better? Or are

those three reactions mapped to the reaction with the different cofactor (then using another term than

“with the exception” could clarify this).

3. In the new version you have added a nice extension of the production envelops and also a short

explanation in the Methods. You state you use cobraPy, and in the legend of Fig. 2 you state you limit

the glucose uptake flux and maximize the production of different compounds. I assume you fixed the

growth rate and then did the pFBA to maximize the compound production flux, but a short sentence in

the Methods could clarify this.

4. The use of in text citations could enhance the readability. For example, youwrite:“obtained via competitive

fitness assays, from [25].” & “turnover numbers from [29].” => It might be nicer to use an in text citation

here mentioning the authors/year (and the number)

5. Also the references could benefit from an improved style, e.g. removing the superfluous information (e.g.

visiting date, double URLs and publisher information for journals), and mentioning all authors instead of

just the first.

Evaluation round #1

DOI or URL of the preprint: https://doi.org/10.48550/arXiv.2406.16596
Version of the preprint: 2

Authors’ reply, 19 March 2025

Download author’s reply

Decision by Meike Wortel , posted 19 December 2024, validated 20 December 2024

All three reviews positively evaluate your manuscript and agree that the model is a valueable resource for

the community. However, they raise minor issues that could improve your manuscript. A point raised by two

reviewers is the validation of the parameter fitting. Moreover, several smaller points address the clarity of

the text and minor suggestions. Based on the reviews this preprint does not need extensive revision, but one

reviewer suggests additional comparisons with previous models that could be considered. As a last point, one

reviewer checked all the provided code and commends the clarity of the code, but reports some minor issues

that would increase the usability if resolved.

Reviewed by Daan de Groot , 13 December 2024

Download the review

Reviewed by anonymous reviewer 1, 04 December 2024

The authors developed a central metabolic model of Escherichia coli, named iCH360, which expands on

core carbon metabolism by including pathways for amino acid, fatty acid, and nucleotide biosynthesis. They

demonstrated its utility through applications involving standard flux balance analysis (FBA) as well as integrated

approaches with thermodynamic and kinetic calculations. With detailed annotations of enzymes and trans-

porters, iCH360 serves as an excellent platform that integrates comprehensive biochemical knowledge about

central metabolism. The model is exceptionally valuable from an educational perspective. One can envision

using the reconstruction and applications described in this paper to develop a semester-long systems biology

course, transitioning from simpler to more complex modeling approaches. From a research perspective,
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iCH360 is an ideal model for the initial testing of novel algorithms, such as those integrating gene expression

or metabolite concentrations into metabolic networks. I anticipate that iCH360, along with its derivatives also

provided by the authors, will become a standard tool in the metabolic network modeling community.

Themanuscript is generally well-written, though some parts are overly complex. Below are some suggestions

and questions to improve clarity:

1) In sections like 2.2, it would be beneficial to include comparisons with the ECC and ECC2 models alongside

the parent model iML1515 to provide a clearer context for iCH360’s advancements and distinctions.

2) Page 2: ”For example, when designing and testing gene knockout strategies, genome-scale networks

often wrongly predict unphysiological metabolic bypasses which have to be manually inspected and filtered

out”. This statement needs a supporting reference.

3) Figure 1: It is not clear what type of conversions are represented by the four reactions right above the

grey area (the rectangular region with Phosphate-CO2-Ammonium-related pathways) on the lower left corner.

4) Page 3: ”The final assembled model (Figure 1) comprises 304 compartment-specific metabolites and 323

metabolic reactions mapped to 360 genes, thus qualifying as a medium-scale model ranging in between ECC

and iML1515 (Supplementary Figure 5).” Please also indicate the number of unique metabolites excluding

compartmentalization.

5) Page 7: ”By simultaneously fitting all available conditions, we ensured that our adjustment procedure is

robust to condition-specific biases. Further, by introducing regularisation within our adjustment scheme, we

penalised large deviations of parameters from the original dataset, increasing the robustness of the procedure

to overfitting”

Based on these statements, can the authors do a ”leave-one-condition-out” cross validation test to confirm

the robustness of their procedure? I must add that I cannot see how this can be done based on the descriptions

in Supplementary Information. If this indeed cannot be done, then the abovementioned statements may need

to be revisited and clarified. For example, what is the advantage of simultaneous fitting if each condition is

fitted with a separate parameter?

6) Page 8: The following sentence is not clear: ”However, it is worth noting that this analysis was performed

using a simple capacity-based enzyme cost function, which summarises different determinants of enzyme

cost such as driving force and substrate saturation [27] in one single value, assumed to be constant. ” Please

rephrase.

7) Page 9: ”As substrate availability is increased, the cost of substrate uptake decreases and higher growth

rates are achieved by switching to lower yield, acetatesecreting modes, in line with typical observations of

overflow metabolism in E. coli [29, 30]. However, the satFBA formalism can also be used with additional flux

bounds, thus going beyond EFM-based analysis. For example, if a positive lower bound on ATP hydrolysis is

added as a maintenance requirement, optimal solutions to the satFBA problem will no longer be elementary

modes, and the yield of the optimal solution no longer follows a piecewise constant profile (Supplementary

Figure 16)”

This section is not clear. Specifically, the differences highlighted between Fig. 6 and Supp. Fig. 16, as

mentioned in the text, are not readily apparent. Could the authors clarify this section and ensure the figures

distinctly represent what is described?

8) Figure 6C: ”C: The yield of the optimal satFBA solution, computed as the ratio of biomass flux to glucose

uptake, progressively decreases as external glucose availability increases.”

Is the definition of yield the same everywhere in the manuscript? If so, this definition could be provided

earlier to avoid confusion.

9) Supp.Tbl. 2: One type of edge between a reaction and a protein indicates inactive proteins. How many of

the 360 genes in the model encode inactive proteins?

10) Supp.Tbl. 2: The AND/OR example of the last row is not clear. How is this related to AND or OR

connections?

11)Supp.Inf. A.3: Eqn 18 and the bullet point that explains it are not clear. It would be useful to provide an
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example or examples from complicated GPRs with mixed ANDs and ORs.

12)Page 15, Eqn. 5: Not clear where Eqn. 5 comes from. Also, mu is the specific growth rate, which, by

definition, is the flux of biomass reaction (vBM). So it is not clear why we need the other terms and what is

being achieved in this section (4.10).

13)Page 16: ”where b is the min driving force (or the MDF after optimisation), c � Rm is a vector of log-

metabolite concentrations, lc; uc � Rm are (log) lower and upper bounds on these concentrations, S � Rm×N is

the stoichiometric matrix of the model, R is the Boltzmann gas constant, and T is the temperature used for the

computation of the free energy estimates. ”

I believe what is said to be the Boltzmann gas constant here (traditionally this is denoted by a ”k” not ”R”) is

actually the ideal gas constant.

14) Section A.5.3: ”Following the sMOMENT formulation of enzyme-constrained FBA [23], we consider a

metabolic network with N reactions and M metabolites where all metabolic fluxes are positive (i.e. reversible

reactions are split into forward and backwards components) and at most one enzyme is associated with each

reaction.”

Based on the last part of this sentence, it is not clear what is done when multiple enzymes (isozymes) are

involved in a reaction.

15) Section A.5.3, Eqn. 29: Biomass production reactions are typically irreversible. So, it is not clear what the

negative biomass flux is needed to account for.

16) Finally, could the authors please explain how much of the knowledge graph annotations are included in

the JSON or SBML versions of the iCH360 model?

Reviewed by Benjamin Luke Coltman , 12 December 2024

Download the review
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