
Review by Alan Rogers (recommender)

Thank you for providing this amendment to the original decision letter. We
rephrased our definition of genotype likelihoods, as described in our replies.

This manuscript is improved, but I’m not yet prepared to recommend it. The
computational results convince me that the math is at least approximately correct
and that the method is an improvement over its competitors. I am therefore optimistic
about the manuscript. There are however still problems.

In response to the first set of reviews, the authors now emphasize that their method
is not designed to detect variation in ploidy along a chromosome. Instead they are
interested in variation among chromosomes and among individuals. This raises the
question: why use a HMM at all? All three reviewers (including me) asked this
question. The authors do provide a rationale for this decision, but it is buried on lines
214–219 (see below). This rationale should be in the introduction, and it should be
given more emphasis, as it justifies the entire approach taken in this paper. In my
view, this rationale is still a bit thin. I find it strange that a HMM would be used to
model something that doesn’t vary along the chromosome.

HMMploidy has been primarily designed to detect ploidy variation among
chromosomes and individuals. However, copy number variants and structural
variations affect genomic patterns within chromosomes. Additionally, nuances
of low-coverage short-read sequencing data may leave further local patterns in
the data. Therefore, we implemented a HMM feature in our model for two main
reasons.



Firstly, with a HMM, we are able to obtain a distribution of ploidy tracts along a
chromosome and therefore provide further statistical support for each tested
ploidy. In other words, we can infer how much of the sequencing data on said
chromosome support the most likely ploidy.
Secondly, with a HMM, we are able to identify local regions where the predicted
ploidy deviates from the whole-chromosome estimate. Said regions can be
then further investigated, for instance as potential locations of CNVs.
Generally, with a HMM, we are able to identify large segmental losses,
polyplodisations, and rearrangements, as well as other genomic features (i.e.
pseudo-automsomal regions in sex chromosomes) as a byproduct of
HMMploidy’s predictions.
Furthermore, It is worth mentioning that, unlike other methods, HMMploidy
allows to differentiate between local changes in sequencing depth levels (i.e.
due to the presence of CNVs) and genotype frequencies (i.e. due to selection
or inbreeding) by symply disabling or enabling the use of genotype
likelihoods.
Finally, the statistical framework in HMMploidy can be adopted to calculate
ploidy likelihoods to obtain chromosome-wide estimates, as suggested by the
recommender and reviewers.

We now explicitly mention these justifications in the introduction:
“HMMploidy infers ploidy variation in sliding windows among chromosomes
and among individuals. While ploidy is not expected to vary within each
chromosome, the distribution of inferred ploidy tracts provides further
statistical support to whole-chromosome estimates.
Additionally, HMMploidy can identify local regions with aberrant predicted
ploidy to be further investigated, for instance as potential locations of copy
number variants or structural rearrangements.
Finally, any detected within-chromosome ploidy variation can serve as a
diagnostic tool to investigate possible mapping or assembly errors.
Notably, by training separate HMMs, HMMploidy can effectively infer
aneuploidy among chromosomes and samples.“

To suggest further applications of of HMMploidy, we now add in the
discussion:
“We predict that HMMploidy will have a broad applicability in studies of
genome evolution beyond the scenarios illustrated in this study. For instance,
the statistical framework in HMMploidy can be adopted to infer aneuploidy in
cancerous cells (6), or partial changes of copy numbers in polyploid genomes
due to deletions or duplications (52).”



Second, and more seriously, there are real problems in sections 1.2 and 1.3 of the
supplement. The exposition is unclear in these sections, and the math seems to be
incorrect. (See below for details.)
We assume that this comment now refers only to the unclear exposition, which
we addressed as detailed below.

We now state that “We define a locus as a nucleotide site. We assume that
sequencing reads are mapped and aligned so that bases can be assigned to a
single nucleotide site.“

We now specify that “...... Y is the set of ploidy levels included in the model
and |Y| is the number of ploidy levels (i.e. cardinality of Y).”

Thanks for noticing this. “K-th ploidy” is indeed wrong, as well as the “n”
index for C^(k)_m,n and O^(k)_m,n, since observations and average depth are
inside a window. The correct notation is indeed the one shown in Figure S1.
We probably created this error when we had a workaround of the notation
earlier during the writing of the manuscript. We now write:
“.... each of the |Y| ploidies emits two observations. Those contain a
dependency on which ploidy is assigned to that window. The observations
consist of the sequenced reads O^{(k)}_m and the average sequencing depth
C^{(k)}_m in the k-th window ….”

We agree and now state that “... HMMploidy’s power increased with sample
size up to 20 - the largest we considered - in all scenarios excluding the
tetraploid case …”, as suggested.



As explained above, we edited and moved this paragraph in the introduction
which now reads “HMMploidy infers ploidy variation in sliding windows among
chromosomes and among individuals. While ploidy is not expected to vary
within each chromosome, the distribution of inferred ploidy tracts provides
further statistical support to whole-chromosome estimates.
Additionally, HMMploidy can identify local regions with aberrant predicted
ploidy to be further investigated, for instance as potential locations of copy
number variants or structural rearrangements.
Finally, any detected within-chromosome ploidy variation can serve as a
diagnostic tool to investigate possible mapping or assembly errors.”



Thank you for these very detailed comments and corrections in the review. We
agree that the mentioned parts needed a rewriting for better understanding
and ease of reading. We reworked the whole genotype likelihood explanation,
in which a mention of the logic behind varying Phred errors and the Li et al
(2008) framework used in SAMtools are also included. We simplified the
notation making the m,n indices implicit, so that formulae became shorter and
readable. Also, we defined the genotypes as collections of nucleotides, so that
it fits in the formulations we need. There was an error in the genotype
likelihood formula we had before, and we corrected it. Analogous corrections
to simplify the notation have been done in the first part of the main paper,
where we illustrate briefly the probability of the data. Now the supplementary
part reads as follows:





-----------------------------------------------------------------------------------------------------------

This has now been corrected in the text.

We corrected all instances of this typo.

We now clarify that “The average depths are modelled with a negative binomial
distribution to take data overdispersion into account (Choudhary et al. 2022).”

We changed the text according to the reviewer’s suggestion.



We changed all the occurrences of ln into \ln in the text.

In this part of the text, by setting the partial derivative to zero and solving for
the parameter of the derivative, we can find the parameter’s optimum. We can
see it is quite unclear from how the text is formulated. Now we rewrite this part
of the supplementary as (equations and math text skipped with dots)
“By setting the partial derivative of $…..$ w.r.t. a certain $……..$ equal to zero
as below, we will be able to calculate the optimum for the derivative’s
parameter
……………
Solving for ……….. leads to the optimum of the parameter:
…………. “



Review by Nicolas Galtier

I found the manuscript to be substantially improved in many respects, and would like
to thank the authors for the hard work and willingness to address all the reviewers'
remarks. I still have a couple of questions.

1. From the authors' response and corrections, it is my understanding that the
HMMploidy method is intended to be applied to segments across which ploidy does
not vary. This is perceptible from the modified introduction, in which the emphasis is
put on aneuploidy (i.e., single-ploidy chromosomes), and the simulation part, in
which constant ploidy is assumed. This is a perfectly valid goal, but one might then
ask, why taking an HMM approach? If ploidy is assumed to be constant then the
likelihood can probably be calculated based on the provided equations without the
HMM layer. The authors might like to clarify the choice of an HMM approach if ploidy
is supposed not to change across the analyzed segments.

As explained to the recommender, HMMploidy has been primarily designed to
detect ploidy variation among chromosomes and individuals. However, copy
number variants and structural variations affect genomic patterns within
chromosomes. Additionally, nuances of low-coverage short-read sequencing
data may leave further local patterns in the data. Therefore, we implemented a
HMM feature in our model for two main reasons.
Firstly, with a HMM, we are able to obtain a distribution of ploidy tracts along a
chromosome and therefore provide further statistical support for each tested
ploidy. In other words, we can infer how much of the sequencing data on said
chromosome support the most likely ploidy.
Secondly, with a HMM, we are able to identify local regions where the predicted
ploidy deviates from the whole-chromosome estimate. Said regions can be
then further investigated, for instance as potential locations of CNVs.
Generally, with a HMM, we are able to identify large segmental losses,
polyplodisations, and rearrangements, as well as other genomic features (i.e.
pseudo-automsomal regions in sex chromosomes) as a byproduct of
HMMploidy’s predictions.
Furthermore, It is worth mentioning that, unlike other methods, HMMploidy
allows to differentiate between local changes in sequencing depth levels (i.e.
due to the presence of CNVs) and genotype frequencies (i.e. due to selection
or inbreeding) by symply disabling or enabling the use of genotype
likelihoods.
Finally, the statistical framework in HMMploidy can be adopted to calculate
ploidy likelihoods to obtain chromosome-wide estimates, as suggested by the
recommender and reviewers.

We now explicitly mention these justifications in the introduction:



“HMMploidy infers ploidy variation in sliding windows among chromosomes
and among individuals. While ploidy is not expected to vary within each
chromosome, the distribution of inferred ploidy tracts provides further
statistical support to whole-chromosome estimates.
Additionally, HMMploidy can identify local regions with aberrant predicted
ploidy to be further investigated, for instance as potential locations of copy
number variants or structural rearrangements.
Finally, any detected within-chromosome ploidy variation can serve as a
diagnostic tool to investigate possible mapping or assembly errors.
Notably, by training separate HMMs, HMMploidy can effectively infer
aneuploidy among chromosomes and samples.“

To suggest further applications of of HMMploidy, we now add in the
discussion:
“We predict that HMMploidy will have a broad applicability in studies of
genome evolution beyond the scenarios illustrated in this study. For instance,
the statistical framework in HMMploidy can be adopted to infer aneuploidy in
cancerous cells (6), or partial changes of copy numbers in polyploid genomes
due to deletions or duplications (52).”

2. The section on empirical analysis is still a bit unclear to me. In particular:
- do we have external knowledge on the real level of (aneu)ploidy in these samples?

The empirical analysis presented in this study aims at recapitulating previous
findings on aneuploidy in C. neoformans. As described in the introduction,
ploidy variation is an adaptive mechanism in Cryptococcus neoformans in
response to a harsh environment and drug pressure. Aneuploidy-driven
heteroresistance to antifungal drug fluconazole is emerging and, therefore, the
inference of ploidy is this system is important in both evolutionary and clinical
studies.
The data herein used was generated in a previous study (Rhodes et al. 2017
https://doi.org/10.1534/g3.116.037499), and authors inferred aneuploidy (see
Figure 2) by investigating the variation of normalized coverage. Specifically,
authors write “In order to determine aneuploidy, whole-genome coverage data
were normalized and regions displaying normalized coverage equal to two
were deemed diploid events (likewise, normalized coverage equal to three was
deemed a triploid event, and so on), whereas normalized coverage equal to
zero was deemed a deletion event.”
In Figure 2 of Rhodes et al. 2017, authors show the patterns of inferred ploidy
variation, and concluded that aneuploidy events were observed in at least
seven genome pairs of isolates, especially on chromosome 12, in line with
previous reports (Omerod et al. 2013
https://pubmed.ncbi.nlm.nih.gov/23550133/). With this approach, Authors also

https://doi.org/10.1534/g3.116.037499
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/g3journal/7/4/10.1534_g3.116.037499/8/1165f2.gif?Expires=1649928748&Signature=BVl~qPQQI~IQOHjY8Oi6yQlsEifou~YkyFMVGiG7q1f8hIq3gTjxEQDWY7C5-Ru~uTioBT0zHxXOFoMiNwlhaeO0-fEkqfVuO4m4pyI00ffmWwQY-aufAYHhcvGh5lZRjpEyGynSmRcO47IxQg9meEHT1yU4ansMCc2C7xESs-2bKHXIwN47scXsVnyslpkMZMy3II1JXzyAZtODcFD29b9RquLxGW34uyhY58L1hSvXMVfjTUlde4Em~O31Q046nWydcVlkUsMei~Qx7s4vHFu1Usy67ixhRdT~XXugfuzm8bZ30vllgum7pWsCez~E~N1b80FagbsNsaNgwTTqNw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://pubmed.ncbi.nlm.nih.gov/23550133/


identified several instances of copy number variation (CNV) in genes known to
be involved in drug resistance and virulence.

Our aim was to recapitulate their findings on extensive aneuploidy in C.
neoformans using HMMploidy. Importantly, we sought to infer ploidy on both
the original high-coverage and a downsampled data set, and assessed any
difference.

We agree that these previous findings and our goal were not clear. In the
Results section we now write:
“We used HMMploidy to infer ploidy variation in 23 isolates of Cryptococcus
neoformans recovered from HIV-infected patients (44). In the original study
(44), by analysing variation in normalised sequencing coverage, Rhodes and
coworkers identified extensive instances of aneuploidy, especially on
chromosome 12, in accordance with previous findings using karyotypic
analysis (40). We sought to replicate these inferences using HMMploidy and
assessed its performance on a downsampled data set to mirror data
uncertainty.”

- I don't quite understand the interpretation of the CCTP27 vs CCTP27-d121
discrepancy. In this genome the sequencing depth of chromosome 12 was tripled at
day 121, compared to the reference at day 0, suggesting some major biological
event. HMMploidy infers the same ploidy (of 1) for chromosome 12 in the two
samples, thus missing this biological event as far as I understand it. Still, this is
interpreted as a success of the method.

Regarding Figure 3, the average depth for CCTP27-d121 almost tripled in (most
of) chromosome 12 compared to chromosome 1. Despite this, HMMploidy
(which also uses information on genotypes) infers no change in haploidy. We
interpret this result as a large CNV on chromosome 12 for CCTP27-d121 rather
than a recombining triploid chromosome. We see this as a further advantage
(rather than a “success”) of using a method that is not solely based on
coverage variation.
We now rewrite the related paragraph as “We interpret this pattern as one CNV
instance spanning most of chromosome 12 for CCTP27-d121. In fact, despite
the increase in depth, the data is modelled as a haploid chromosome by the
genotype likelihoods. This further illustrates the importance of jointly using
information on genotypes and depth variation to characterise aneuploidy and
CNV events.”

The authors might like to clarify their specific goals with this analysis, and what kind
of biological pattern or structure they are targeting. If the idea is to identify polyploid
segments having accumulated a certain amount of sequence variation, as seems



implicit in the empirical analysis section, then this should probably be stated more
explicitly and discussed.

We agree that the rationale for this analysis was not very clear. We believe that
with the changes made in the responses above, both our aim and the
biological reasons for aneuploidy in C. neoformans are evident now. Please
also note that “Notably, we were able to retrieve the same patterns of predicted
ploidy variation when artificially down-sampling the sequencing data to 20% of
the original data set”, unlike competing tested methods, suggesting that our
inferences are robust to lower quality data.



Review by Barbara Holland

This paper is an interesting application of a Hidden Markov Model to both inferring
ploidy level and detecting changes in ploidy level. The authors make a convincing
case for why this is an interesting problem with potential applications in both
agriculture and medicine. The new method appears to be more accurate at inferring
ploidy levels than existing alternatives particularly at low sequencing coverage.

The issue of whether the method is good at detecting changes in ploidy level does
not appear to be explored. My understanding of the model is that the HMM part of
the model is used to model the changes in ploidy level. Perhaps I am missing
something obvious, but the authors don’t seem to exploit this feature in their
simulations (i.e. they all have constant ploidy level).

As explained to the recommender and the previous reviewer, HMMploidy has
been primarily designed to detect ploidy variation among chromosomes and
individuals. However, copy number variants and structural variations affect
genomic patterns within chromosomes. Additionally, nuances of low-coverage
short-read sequencing data may leave local patterns in the data. Therefore, we
implemented a HMM feature in our model for two main reasons.
Firstly, with a HMM, we are able to obtain a distribution of ploidy tracts along a
chromosome and therefore provide further statistical support for each tested
ploidy. In other words, we can infer how much of the sequencing data on said
chromosome support the most likely ploidy.
Secondly, with a HMM, we are able to identify local regions where the predicted
ploidy deviates from the whole-chromosome estimate. Said regions can be
then further investigated, for instance as potential locations of CNVs.
Generally, with a HMM, we are able to identify large segmental losses,
polyplodisations, and rearrangements, as well as other genomic features (i.e.
pseudo-automsomal regions in sex chromosomes) as a byproduct of
HMMploidy’s predictions.
Furthermore, It is worth mentioning that, unlike other methods, HMMploidy
allows us to differentiate between local changes in sequencing depth levels
(i.e. due to the presence of CNVs) and genotype frequencies (i.e. due to
selection or inbreeding) by symply disabling or enabling the use of genotype
likelihoods.
Finally, the statistical framework in HMMploidy can be adopted to calculate
ploidy likelihoods to obtain chromosome-wide estimates, as suggested by the
recommender and reviewers.

We now explicitly mention these justifications in the introduction:
“HMMploidy infers ploidy variation in sliding windows among chromosomes
and among individuals. While ploidy is not expected to vary within each



chromosome, the distribution of inferred ploidy tracts provides further
statistical support to whole-chromosome estimates.
Additionally, HMMploidy can identify local regions with aberrant predicted
ploidy to be further investigated, for instance as potential locations of copy
number variants or structural rearrangements.
Finally, any detected within-chromosome ploidy variation can serve as a
diagnostic tool to investigate possible mapping or assembly errors.“

So my guess is that the superior performance of the method compared to the
existing approaches is mostly coming from having a better model for the genotype
likelihood and the error process rather than it being an HMM. With this in mind it
would be good to move the discussion of this part of the model into the main text
rather than the Supplementary Material.

The better performance of HMMploidy is indeed given by the inclusion of
genotype likelihoods, information that is typically not considered by other
methods.

Minor points
Keywords: check spelling of poliplody

Fixed.

Line 37 ‘the evolution’ -> ‘evolution’

The sentence is “...inferring the ploidy of a sample from genomic data, like in
the case of Cryptococcus neoformans, is essential to shed light onto the
evolution and adaptation across the domains of life.” We believe that the use
of “the” is correct but we are fine removing it if the Recommender wishes so.

The paragraph at the top of page 3 has a few typos/grammatical issues. E.g
‘reference data at known ploidy set...’,
incorporate -> incorporates

Fixed.

Line 74, by diallelic do you mean that you only see at most two states at a particular
site across the sample of genomes under consideration (e.g A/G or C/T) regardless
of how many copies of the site there are? Or is diallelic with respect to a sequencing
read, i.e. there are only two variants of a read?

By diallelic we mean that we observed at most two states at a particular
genotype regardless of the number of copies. For instance, with alleles A and



G, triploid genotypes are AAA AAG AGG GGG. Therefore, we do not consider
multiallelic variation. We now write “In what follows, data is assumed to be
diallelic (i.e. we observed at most two states at a particular genotype
regardless of the number of copies), without loss of generality.” to make it
clearer.

Line 83. Is O_{m,n} a sequencing read or just a single site?

We mean a single nucleotide site n for a genome m. We added this term when
defining the variable, so that it is clearer.

line 92. Is the population frequency F_n assumed to be known or is it also something
that needs to be estimated? How is this done?

F_n is estimated as in section 1.3 of the supplementary material, as shown
below.

Line 92 It seems odd to have the genotype likelihood relegated to the supplementary
material when it is a very important component of the model. It isn’t a long section,
so I’d suggest moving it to the main text.

We agree that the genotype likelihoods are an important part of the method.
However, during previous rounds of review, we were asked to move this part to
the supplementary material (alongside other mathematical details). We feel
that the current structure is a good balance between narrative and technical
details. Furthermore, the genotype likelihood model presented herein is a
simple extension of the GATK model to polyploidy. Therefore, we don’t feel the



need to move this section to the main text but we are happy to change it
depending on the recommender’s opinion.

line 128 how are the alpha and beta parameters for the Poisson Gamma distribution
selected/estimated?

Estimation of the parameters is done using the maximization part of the
heuristic EM algorithm. We explain those steps in the supplementary material,
where we show the equations for finding an optimal alpha, that in turn will be
used to calculate an optimal value for beta. It is not much different from
optimizing other distribution's parameters, e.g. gaussian, with the difference
that the maximization equations are more complex to solve and require some
form of approximation and a few controls to avoid numerical problems.

Line 155 I find the description of the simulation a bit confusing, you say that ploidy
chosen from 1 to 5 is constant along the genome. I thought the point of the HMM
was to be able to detect changes in ploidy level?

In order to compare the performance HMMploidy with existing methods, we
simulated genomes with constant ploidy. How HMMploidy can infer ploidy
variation can be appreciated with the application on the real data set, and
specifically with the robust estimation after artificially downsampling the data.

Line 245 “allows to overcome” -> “allows the method to overcome”

Fixed.

Line 248, I don’t understand the sentence starting “On the former point...”

The paragraph now reads as:
“However, training a separate HMM on each genome allows the method to
overcome two main issues: samples sequenced at different coverage, and
ploidy varying among samples.
When samples are sequenced at different coverage, it is common practice to
standardise the sequencing depth across all genomes. However, this would
make the estimation of the distributions of standardised counts difficult,
especially in samples with noise, errors, and limited coverage.”

Line 256 missing full stop

Fixed.

Line 264 tuntimes -> runtimes
Fixed.


