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Abstract. Orthology and paralogy relations are often inferred by meth-
ods based on gene sequence similarity that yield a graph depicting the
relationships between gene pairs. Such relation graphs frequently con-
tain errors, as they cannot be explained via a gene tree that contains
the depicted orthologs/paralogs while being consistent with the species
evolution. Previous research has mostly focused on correcting such errors
in some minimal way, for instance by changing a minimum number of
relations to attain consistency.

In this work, we ask: could the errors in the orthology predictions be
explained by lateral gene transfer? We formalize this question by allow-
ing gene transfers to behave either as a speciation or as a duplication,
expanding the space of valid orthology graphs. We then provide a va-
riety of algorithmic results regarding the underlying problems. Namely,
we show that deciding if a relation graph R is consistent with a given
species network N with known transfer highways is NP-hard, and that it
is W[1]-hard under the parameter “minimum number of transfers”. Dur-
ing the process, we define a novel algorithmic problem called Antichain
on trees, which may be useful for other reductions. We then present an
FPT algorithm for the decision problem based on the degree of the gene
tree associated with R. We also study analogous problems in the case
that the transfer highways on a species tree are unknown.

1 Introduction

In phylogenetics, evolutionary relationships between genes and species are
often represented via phylogenetic trees. Species trees are phylogenetic
trees displaying the evolutionary relationships among a set of species,
while gene trees are phylogenetic trees displaying the evolutionary rela-
tionships among genes. Vertical descent with modification (speciation)
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constitutes only part of the events shaping a gene history; other such
events include, for example, duplications, losses and transfers of genes.

When gene trees are used to estimate the evolutionary relationships
of the species containing those genes, only homologous genes – genes
sharing a common ancestor – should be compared. Homology can be
refined into the concepts of orthology and paralogy : two genes from two
different species are said to be orthologous if they are derived from a
single gene present in the last common ancestor of the two species via
a speciation event, and paralogous if they were derived via a duplication
event [11].

Orthology inference is the starting point of several comparative ge-
nomics studies, and is also a key instrument for functional annotation
of new genomes [13]. Several methods have been designed to distinguish
orthologs from paralogs. These can be roughly divided in two groups [1].
The first group of methods, based on phylogenetic inference, reconstruct
a gene tree and deduce orthology relationships from this tree by com-
paring it with the species tree via reconciliation algorithms (see [4] for
a review). Another class of methods estimates orthology using sequence
similarity (see e.g. [35,8, among others] and [29] for a survey), hypothe-
sising that orthologs are more similar than paralogs. Both methods can
yield a relation graph, in which vertices are genes, edges represent pu-
tative orthologous gene pairs and non-edges represent putative paralogs.
Phylogeny-based methods require a prior knowledge of the species tree,
and are very dependent on the accuracy of the gene trees. Unfortunately,
the species phylogeny is not always known and gene trees can be highly
inaccurate as a result of several kinds of reconstruction artefact, e.g. long-
branch attraction (LBA) [2]. Similarity-based methods do not suffer from
these drawbacks but still have an important weakness: the inferred rela-
tion graph R may fail to be consistent, meaning that there is no gene tree,
labeled by speciation and duplication events, that can both explain the re-
lations depicted by R and “agree” with a known species tree S. Moreover,
approaches based on sequences tend to miss orthologs whose evolutionary
path involves a duplication followed by high divergence, which occurs for
instance in neofunctionalisation [33].

In recent years, the decision problems of consistency of orthology/paralogy
relations have been extensively studied [25,21,31,24,26,30,6]. Two possible
explanations for the inconsistency of a relation graph R are that either
the set of relations contains errors, or the evolutionary model used to
assess consistency is not appropriate for the gene family at hand. Most
of the previous work in this field has been devoted to detection and cor-
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rection of errors in relation graphs. The second possibility has recently
been considered in [22]. The authors ask, given a event-labeled gene tree
G that displays a given set of relations, whether there is a species net-
work N that can be reconciled with G. In a similar vein, in this paper
we ask: can inconsistent relations be explained by extending the usual
speciation/duplication model to lateral gene transfers? Two genes are
said to be xenologous if at least one of the two genes has been acquired
by gene transfer. As discussed in [27], genes related by transfer may ap-
pear either as orthologs or paralogs, even though they are not related
by speciation or duplication at their lowest common ancestor. The terms
pseudoorthologs and pseudoparalogs were used to designate homologous
genes mimicking orthology and paralogy, respectively, after one or more
lateral gene transfers. Here, we provide a variety of algorithmic results re-
garding the question of explaining inconsistent relations using these new
types of relations.

The paper is organized as follows. In Section 2, we introduce the notion
of orthology/paralogy consistency with a given species network N , and
show how it relates to DS-trees, which are gene trees labeled by speciation
and duplication only. Then, in Section 3 we study the question of deciding
whether a relation graph R is consistent with N , meaning that R can be
represented by a gene history, possibly undergoing lateral transfers, that
agrees with N . We show that, unfortunately, this is an NP-hard problem.
Furthermore, the problem is unlikely to be fixed-parameter tractable with
respect to the number of transfers, as this parameterized version of the
problem is W [1]-hard. On the positive side, we show in Section 4 that
these problems can be solved in time O(2kk!k|V (R)||V (N)|4), where here
k is the maximum degree of the smallest DS-tree exhibiting the relations
of R. In Section 5, we turn to the variant where we have a species tree S
rather than a network, and ask if transfer arcs can be inserted into S so
that R becomes consistent. Some proofs are quite technical and can be
found in the Appendix.

2 Preliminaries

We use the notation [n] = {1, 2, . . . , n}. Across the paper, let Γ a set of
genes, Σ a set of species, and σ : Γ → Σ the mapping between genes and
species.

All trees in this paper are assumed to be rooted and directed, each
edge being oriented away from the root. A species network N on Σ is a
directed acyclic graph with a single indegree-0 node (the root) and |Σ|
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Fig. 1: An illustration of an LGT network with secondary arc (n4, n5), a
gene tree and a relation graph. The genes ai, bi, ci and di, with i ∈ {1, 2},
belong respectively to species A, B, C and D. Internal nodes are labeled
only for the purpose of giving an example of a reconciliation between N
and G, see main text. R is not T0(N)-consistent but it is N -consistent
using 1 transfer.

outdegree-0 nodes (the leaves), such that each leaf is labeled by a differ-
ent element of Σ. Here we will consider only binary species networks, in
which internal nodes have either indegree 1 and outdegree 2 (principal
nodes) or indegree 2 and outdegree 1 (secondary nodes or reticulations).
A Lateral Gene Transfer (LGT) network N [5] is a species network along
with a partition of E(N) = Ep ∪ Es into a set of principal arcs Ep and
a set of secondary arcs Es. The Ep edges correspond to vertical descent,
whereas the Es edge correspond to pairs of species that may transfer
genetic content. The subnetwork N ′ = (V (N), Ep) obtained after remov-
ing the Es edges must be a tree in which the root has outdegree 2. We
denote by T0(N) the tree obtained from N ′ after suppressing indegree-
1 outdegree-1 nodes. Roughly speaking, an LGT network can also be
seen as a network obtained by starting with a species tree S = T0(N),
and then adding secondary arcs with endpoints located on the edges of
S. Note that LGT networks are tree-based networks, where T0(N) is a
distinguished base tree [12]. As defined in [16,38], we say that an LGT
network N is time-consistent if there exists a function t : V (N) → N
such that:

1. t(u) = t(v), if (u, v) ∈ Es, and
2. t(u) < t(v), if (u, v) ∈ Ep.

Note that although time-consistency forbids directed cycles, not all
directed acyclic graphs are time-consistent. For instance, one can easily
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construct an acyclic LGT network that contains two principal arcs (a, b)
and (c, d), and secondary arcs (a, d) and (b, c); no time-consistent labeling
is possible for a, b, c, d. It is also worth mentioning that LGT networks
that admit a time-consistent map were characterized in [16], where a
linear-time algorithm is given to find such a map.

Here a gene tree G on Γ is a binary tree with |Γ | leaves such that
each leaf is labeled by a different element of Γ .

For a binary network N , the root node is denoted by r(N), the set
of leaves is denoted by L(N) and the set of internal nodes is denoted
by I(N). An internal node x of N has either two children, which we
will usually denote xl and xr, or one child, which we will denote xl. The
parent of a node x of in-degree 1 is denoted p(x). If x has out-degree
2, the subnetwork rooted at x, denoted Nx, is the network consisting
of the root x and all the nodes reachable from x (hence if N is a tree,
then Nx is a subtree). If N is a rooted tree, lca(x, y) denotes the lowest
common ancestor of x and y. Note that all these notations apply to LGT
networks and to gene trees (which are special cases of networks). If N is
a species network, since L(N) and Σ are in bijection, we will not make
the distinction between a leaf of N and a member of Σ. The same applies
to gene tree leaves and Γ .

2.1 Reconciliations between gene trees and species networks

A DTL reconciliation aims at explaining how an evolutionary history for
a family of genes (given by a gene tree) may fit within a given species
network N , using speciation, duplication, transfer and gene loss events.
The internal nodes of gene trees, representing ancestral genes, are mapped
to ancestral species. Furthermore, the branches of a gene tree may hide
multiple events that have not been observed, mainly due to losses. Hence,
a reconciliation α maps a node x of G to the sequence of species for
the genes that should appear on its parent branch. Possible mappings
are restricted by few conditions aimed at describing only biologically-
meaningful evolutionary histories.

A reconciliation model for gene trees and time-consistent LGT net-
works (called H-trees) was proposed in [17,19], along with algorithms to
minimize the duplication, loss and transfer cost. We use [39, Definition
3], which uses the following formalization:

Definition 1 ([39]). Given an LGT network N and a gene tree G, let α
be a function that maps each node u of G onto a directed path of N , de-
noted α(u) = (α1(u), . . . , α`(u)). Then α is a DTL reconciliation between
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G and N if and only if exactly one of the following events occurs for each
node u of G and each αi(u). For each αi(u) we also specify a label eα(u, i)
corresponding to the case that holds between u and αi(u), given in square
brackets below (for simplicity, let x := αi(u) below):

a) if x is the last node of α(u), one of the cases below is true:

1. u ∈ L(G), x ∈ L(N) and σ(u) = x; [extant leaf ]

2. {α1(ul), α1(ur)} = {xl, xr}, where (x, xl), (x, xr) ∈ Ep; [S]

3. α1(ul) = x and α1(ur) = x; [D]

4. {α1(ul), α1(ur)} = {x, y}, where (x, y) ∈ Es; [T]

b) otherwise, one of the cases below is true:

5. αi+1(u) = y, where (x, y) is one of the two outgoing arcs of x in
Ep; [SL]

6. αi+1(u) = y, where (x, y) is in Es; [TL]

7. αi+1(u) = y and (x, y) is the only outgoing arc of x in Ep; [∅]

When α is a DTL reconciliation between G and N , we call the pair (G,α)
a reconciled gene tree.

By a slight abuse of notation, we may write |α(u)| to denote the
number of vertices on the path α(u). If α is clear from the context, we may
write e(u, i) in place of eα(u, i). With a slight abuse of terminology, we
will write e(αi(u)) to denote e(u, i). We will also write αlast(u) to denote
α`(u) and e(u, last) or e(αlast(u)) to denote e(u, `) where ` = |α(u)|.

A speciation (S) sends its child genes to the child species through
principal arcs. A duplication (D) makes two copies of the gene in the
current species. A transfer (T) corresponds to transferring the lineage of
a child of a gene to another branch of the species tree, while the sibling
lineage still evolves within the lineage of the parent. A speciation-loss (SL)
is a speciation where one of the descending genes is absent. A transfer-
loss (TL) is a transfer of one of the two descendants of a gene combined
with the loss of its sibling lineage. A no event (∅) indicates that the gene
is not transferred and follows the primary species history. Note that, if
N is time-consistent, all T and TL events can be guaranteed to happen
between co-existing species. Moreover, it is not hard to see that for a
given root-to-leaf path g1, . . . , gk of G, the concatenation of the α(gi)
paths correspond to a directed path in N (with some nodes that may
occur multiple times in a row because of D nodes). Hence, if N is time-
consistent, α ensures that genes evolve without going back in time. Also
note that some models only specify the last element of each α(u) (e.g. the
µ map in [32,38]).
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Fig. 2: Illustration of a DTL reconciliation α between the LGT network
N in Figure 1a and the gene tree G in Figure 1b. In cases where α(x)
is a path with more than one vertex, only the last vertex of this path is
labeled with x. Labels in grey denote the vertices of N .

An example of a DTL reconciliation between the LGT network in
Figure 1a and the gene tree in Figure 1b is as follows: α(g1) = (n1),
α(g2) = (n1), α(g3) = (n1), α(g4) = (n2), α(g5) = (n2, n4), α(g6) = (n2),
α(g7) = (n3), α(a1) = (A), α(b1) = (n5, B), α(c1) = (n4, C), α(d1) = (D),
α(a2) = (n3, A), α(b2) = (n5, B), α(c2) = (C), α(d2) = (n2, D). See
Figure 2. For this DTL reconciliation, we have e(α1(g1)) = e(α1(g4)) = D,
e(α1(g2)) = e(α1(g3)) = e(α1(g6)) = e(α1(g7)) = S, e(α2(g5)) = T,
e(α1(b1)) = e(α1(b2)) = ∅, e(α1(c1)) = TL, e(α1(a2)) = e(α1(d2)) =
e(α1(g5)) = SL, and e(αlast(u)) = extant leaf for all u ∈ L(G).

Given x, y ∈ Γ , let u = lcaG(x, y). Then we say that x and y are
orthologs w.r.t a reconciled gene tree G if e(αlast(u)) = S, paralogs if
e(αlast(u)) = D, and xenologs if e(αlast(u)) = T. Note that one of these
cases must hold for all distinct x, y ∈ Γ .

2.2 Orthology/paralogy relation graphs

An undirected graph R is called a relation graph if V (R) = Γ (see Figure
1c). Since R is undirected, we may denote an edge {x, y} of R as xy. Rela-
tion graphs are often used to depict orthology and paralogy relationships
[21]: for any pair x, y of distinct vertices in R, xy is an edge in R if x and y
are orthologs, otherwise x and y are paralogs. Several orthology-detection
methods such as OrthoMCL [35], ProteinOrtho [34] and OrthoFinder [8]
use sequence similarity as a proxy for orthology. Roughly speaking, sim-
ilar sequences are presumed more likely to be orthologs. When transfers
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are present, sequence similarity predictions get trickier: xenologs can be
“interpreted” as either orthologs, in case the two copies retained the same
function (and thus their sequences are likely to be similar), or paralogs,
if they did not (and thus their sequences are likely to be different). In the
following, we adapt the framework described in [21] to the presence of
xenologs. Note that in [23,15,14,32], the authors approach this problem
from a different angle, supposing the xenology relationships are given in
the relation graph.

We say that a reconciled gene tree (G,α) displays a relation graph
R, if there is a way of reinterpreting transfers as either speciation or
duplication events, such that for any pair x, y of vertices in R, xy is an
edge in R if and only if x and y are orthologs according to (G,α). More
precisely, we introduce two new types of events TS,TD, which correspond
to transfers that behave as a speciation and a duplication, respectively.
We then have the following definition:

Definition 2. Let N be an LGT network, R = (Γ,E) a relation graph,
and (G,α) a reconciled gene tree with respect to N . We say that (G,α)
displays R if there exists a labeling e∗ of α satisfying:

– e∗(u, i) ∈ {TS,TD} if e(u, i) = T;
– e∗(u, i) = e(u, i) if e(u, i) 6= T;
– for any distinct x, y ∈ Γ , if xy ∈ E then e∗(lcaG(x, y), last) ∈
{S,TS}, and otherwise e∗(lcaG(x, y), last) ∈ {D,TD}.

Note that, if (G,α) and R are known, there is only one relabeling e∗

that ensures that (G,α) displays R. Indeed, if e(u, i) 6= T then e∗(u, i) =
e(u, i) and thus fixed by (G,α); otherwise, αi(u) is the last element of α(u)
and αi(u) /∈ L(N), and thus the value of e∗(u, i) (either TS or TD) depends
on whether xy ∈ E, for any x, y ∈ Γ such that αi(u) = lcaG(x, y). The
question of interest in this paper is, if only R is known, whether there
exists a gene tree that displays R and that can be reconciled with a given
network N .

Definition 3. Let N be a species network and R = (Γ,E) a relation
graph. We say that R is consistent with N (or N -consistent) if there
exists a reconciled gene tree (G,α) with respect to N that displays R. In
addition we say that R is N -consistent using k transfers if (G,α) contains
at most k transfers, that is, e(u, i) = T or TL for at most k choices of
(u, i).

For an example, see Figure 1: R is consistent using one transfer with
N because (G,α) displays R (setting e∗(g5, last) = TS) and can be
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reconciled using one transfer (see the reconciliation given above). It is
straightforward to see that R is not consistent using no transfers, thus
R is not consistent according to the definition of consistency without
xenology [25,21,31,24,26]. It is worth mentioning the question studied
in [22] can be interpreted as asking whether R is consistent with some
network N . It turns out that the answer is always yes, albeit a slightly
different model is used.

The main question of interest is to decide whether a set of orthol-
ogy/paralogy relations can be explained by a gene tree that be reconciled
with a given species network.

Network Consistency (NC):
Input: A relation graph R and a time-consistent species network N .
Question: Is R N -consistent?

We can also consider the minimization version. It is the same as NC,
but we are also given a parameter k and ask whether R is N -consistent
using k transfers.

Transfer Minimization Network Consistency (TMNC):
Input: A relation graph R, a time-consistent species network N , and an
integer k.
Question: Is R N -consistent using at most k transfers?

2.3 Relation graphs and least-resolved DS-trees

It will be useful to view the problem in terms of a gene tree instead of
dealing with relations directly. Before proceeding with our algorithmic
results, we establish the equivalence between relation graphs and least-
resolved DS trees. This relationship was initially established in [3]. In
essence, a DS-tree is simply a gene tree D in which each internal node is
labeled S or D. This labeling does not have to be valid with respect to
any species tree or network.

More formally, a DS-tree for Γ is a pair (D, l), where D is a rooted tree
with L(D) = Γ , and l : I(D)→ {D,S} is a function labeling each internal
node of G as a duplication or speciation. Note that D is not necessarily
binary. The graph R(D, l) = (Γ,E) is the relation graph such that for
any pair {x, y} of genes in Γ , if l(lcaD(x, y)) = S then xy ∈ E, and if
l(lcaD(x, y)) = D then xy /∈ E. We say that (D, l) displays a relation
graph R if R(D, l) = R.
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An l-contraction in a DS-tree (D, l) consists of contracting an arc
(u, v) of D with u, v ∈ I(D) and l(u) = l(v), and assigning the same
label to the node resulting from the contraction. We say that (D, l) is
least-resolved if no l-contraction is possible. Note that if (D, l) is least-
resolved, then it has alternating duplication and speciation nodes. That
is, each child of a speciation node is a duplication or a leaf, and each child
of a duplication node is a speciation or a leaf.

A DS-tree (D, l) is a refinement of another DS-tree (D′, l′) if (D′, l′)
can be obtained from (D, l) by a sequence of l-contractions. If D is binary,
then (D, l) is a binary refinement of (D′, l′). Observe that l-contractions
do not change l(lcaD′(x, y)) for any pair of genes (x, y). Thus if (D, l) is
a refinement of (D′, l′), then R(D, l) = R(D′, l′).

It is known that all DS-trees that display R, if any exist, are refine-
ments of the same least-resolved DS-tree.

Lemma 1 ([21,31]). Assume that some DS-tree displays a relation graph
R. Then the least-resolved DS-tree (D, l) that displays R is unique. More-
over, (D, l) can be found in linear time.

We now want to relate DS-trees with DTL reconciliations by reinter-
preting some internal nodes as transfers.

Definition 4. Let N be an LGT network and (D, l) a DS-tree with D
binary. We say (D, l) is N -reconcilable if there exists a DTL reconcilia-
tion α between D and N such that for every internal node u ∈ I(D), the
following holds:

– if l(u) = S, then e(αlast(u)) ∈ {S,T};
– if l(u) = D, then e(αlast(u)) ∈ {D,T}.

Moreover, (D, l) is N -reconcilable using k transfers if α uses k trans-
fers.

If D is non-binary, we say that (D, l) is N -reconcilable (using k trans-
fers) if there exists a binary refinement (D′, l′) of (D, l) such that D′ is
N -reconcilable (using k transfers).

Since relation graphs correspond to a unique least-resolved DS-tree,
asking about the consistency of a relation graph R is equivalent to asking
a similar question about a least-resolved DS-tree (D, l) that displays R,
if it exists (see Appendix for a proof).

Lemma 2. Let N be an LGT network and R = (Γ,E) a relation graph.
Then R is N -consistent (using k transfers) if and only if there exists a
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DS-tree (D, l) for Γ such that R(D, l) = R and such that (D, l) is N -
reconcilable (using k transfers).

Note that in particular, Lemma 2 implies that forR to beN -consistent
for an LGT network N , there must exist a DS-tree (D′, l′) such that
R(D′, l′) = R. Moreover, we may assume that (D′, l′) is a binary re-
finement of the unique least-resolved DS-tree (D, l) that displays R. By
Lemma 1, we can check in linear time whether (D, l) exists, and if so
construct it. Therefore, we will often describe an instance of our problem
by giving the least-resolved DS-tree (D, l) satisfying R(D, l) = R.

We close this subsection by mentioning that the notion of consistency
of a gene tree (or DS-tree) has been studied the other way around. That
is, in [36,18], we are instead given a species tree and a gene family, and
must find a feasible gene scenario under certain constraints.

2.4 Basics of parameterized complexity

We finish this section with some basics of parameterized complexity. A
parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed
alphabet and Σ∗ are the strings over this alphabet. A pair (x, k) ∈ Σ∗×N
is a Yes-instance of a parameterized problem L if (x, k) ∈ L. We call
the second element k the parameter of the instance. A parameterized
problem is fixed-parameter tractable (FPT) if there exists an algorithm
that decides whether a given instance (x, k) is a Yes-instance in time
f(k) · |x|O(1), where f is a computable function depending only on k; such
an algorithm is called an FPT algorithm. The class W [1] is a class of
parameterized problems which are strongly believed to not be FPT. A
parameterized problem L is W [1]-hard if there exists L′ ∈W [1] such that
an FPT algorithm for L would imply an FPT algorithm for L′. For more
information we refer the reader to [7].

3 Hardness of minimizing transfers on LGT networks

In this section, we consider the NC and TMNC problems. We will show
that NC is NP-hard. Moreover, we will show that the minimization ver-
sion TMNC is not only NP-hard, but also W [1]-hard parameterized by k,
the number of transfers. We give a reduction from the following problem,
which is known to be NP-hard and W [1]-hard with respect to k [9]:

k-Multicolored Clique:
Input: A graph H = (V,E), a partition of V into color classes V1, . . . , Vk.
Parameter: k.
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Question: Is there a clique C in H containing exactly one vertex from
each color class Vi?

The full version of the reduction can be found in the Appendix, but
we can sketch the essential ideas here. We describe the NP-hardness proof
– the W [1]-hardness is similar but ensures that the reduction is param-
eterized by k. We first reduce k-Multicolored Clique to a novel inter-
mediate problem, Antichain on Trees (ACT), then reduce ACT to
NC. ACT is formally defined below, but the intuition is as follows: we
are given a tree T , a set X of elements to place on the nodes of T , and a
weight function w : X × V (T )→ N0 ∪ {∞} indicating the cost of placing
x ∈ X on v ∈ V (T ). We interpret w(x, v) < ∞ as “x can go on v” and
w(x, v) = ∞ as “x cannot go on v”. Our goal is to place each x ∈ X on
an allowable node such that the elements of X are pairwise incomparable
(i.e. none is an ancestor of the other).

Antichain on Trees (ACT):
Input: An rooted tree T , a set X, a cost function w : X × V (T ) →
N0 ∪ {∞}.
Question: Does there exist an assignment f : X → V (T ) such that f(x)
and f(y) are incomparable in T (that is, neither is an ancestor of the
other) for each x 6= y ∈ X, and w(x, f(x)) <∞ for each x ∈ X?

We call an assignment f an incomparable assignment if it satisfies
the conditions of an ACT instance. In the minimization version of ACT,
which we call Minimum Weight Antichain on Trees (MWACT), we
are given a parameter k and ask if there is an incomparable assignment
of weight at most k.

Minimum Weight Antichain on Trees (MWACT):
Input: A rooted tree T , a setX, a cost function w : X×V (T )→ N0∪{∞},
and an integer k.
Question: Does there exist an assignment f : X → V (T ) such that f(x)
and f(y) are incomparable in T (that is, neither is an ancestor of the
other) for each x 6= y ∈ X, and such that

∑
x∈X w(x, f(x)) ≤ k?

To see the relationship between ACT and NC, consider an ACT
instance (T,X,w). In the NC setting, N is obtained from T after incor-
porating some specific secondary arcs, and the given relations R have,
as their unique least-resolved DS-tree (D, l), a speciation root with |X|
children, each child being a duplication corresponding to an element of
X. Then being able to place x ∈ X on v ∈ V (T ) represents “αlast(x) = v
is possible”, i.e. the x node of D is mappable onto v. That is, the node
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v has a directed path to every species present at a leaf below x, and the
weight w(x, v) is the number of transfers required to do so. To enforce the
αlast(x) to be pairwise incomparable, we ensure that transfers can only
be undertaken by descendants of the X nodes of D. Thus the speciation
root of D cannot be explained by any transfer whatsoever, ensuring that
its children must be incomparable. We now proceed with the formaliza-
tion of these ideas, and direct the reader to the Appendix for the details
of the constructions.

We first show that ACT is NP-hard and MWACT is W [1]-hard even
under certain restrictions; these will allow us to reduce ACT to NC and
MWACT to TMNC. The main idea is that the incomparability require-
ment can be used to create gadgets as subtrees of an ACT or MWACT
instance – if some parent node is assigned to a variable in X, then none of
its children can be assigned to any variable in X. In addition, the weight
function allows to limit the number of places that can be assigned to a
given variable. Using these ideas, we can create an instance of ACT, such
that an incomparable assignment of finite weight exists if and only if a
given instance of k-Multicolored Clique is a Yes-instance.

Lemma 3. Let H = (V = V1 ∪ V2 ∪ · · · ∪ Vk, E) be an instance of k-
Multicolored Clique. Then in polynomial time, we can construct an
instance (T,X,w) of ACT such that (T,X,w) has an incomparable as-
signment of weight < ∞ if and only if H has a k-multicolored clique.
Furthermore, if an incomparable assignment of weight w < ∞ exists,
then there exists an incomparable assignment with weight ≤ k′ = k2 + 2k,
and (T,X,w) satisfies the following properties:

– w(x, v) ∈ {0, 1,∞} for all x ∈ X, v ∈ V (T );

– w(x, v) = 0 for exactly one v for each x ∈ X;

– if w(x, v) = 0 then w(y, v) =∞ for all y 6= x;

– for any x ∈ X, u, v ∈ V (T ) such that w(x, u), w(x, v) < ∞, u and v
are incomparable.

As (T,X,w) is a Yes-instance of ACT if and only if the correspond-
ing instance of k-multicolored clique is a Yes-instance, we have that
ACT is NP-hard. Moreover, let (T,X,w, k′) be the instance of MWACT
with k′ = k2 + k and T,X,w as in Lemma 3. Then Lemma 3 also im-
plies that (T,X,w, k′) is a Yes-instance of MWACT if and only if the
corresponding instance of k-multicolored clique is a Yes-instance.
As k′ is expressible as a function of k, any FPT algorithm for Lemma 3
implies a FPT algorithm for k-multicolored clique. Therefore, as



14

k-multicolored clique is W [1]-hard, so is MWACT. Moreover as
(T,X,w) satisfies the properties of Lemma 3, we have the following:

Lemma 4. ACT is NP-hard and MWACT is W [1]-hard, even under
the following conditions:

– w(x, v) ∈ {0, 1,∞} for all x ∈ X, v ∈ V (T );

– w(x, v) = 0 for exactly one v for each x ∈ X;

– if w(x, v) = 0 then w(y, v) =∞ for all y 6= x;

– for any x ∈ X, u, v ∈ V (T ) such that w(x, u), w(x, v) < ∞, u and v
are incomparable.

We next reduce ACT to NC. The main idea behind this reduction is
that every element of X can be represented by a child of the same speci-
ation node in a least-resolved DS-tree. The tree T can be represented by
the distinguished base tree in the species network, and secondary arcs can
be added in such a way that, for any DTL reconciliation, the node corre-
sponding to x ∈ X can only be mapped to nodes v for which w(x, v) <∞.

Lemma 5. Let (T,X,w) be an instance of ACT, such that w(x, v) ∈
{0, 1,∞} for all x ∈ X, v ∈ V (T ), w(x, v) = 0 for exactly one v for each
x ∈ X, if w(x, v) = 0 then w(y, v) =∞ for all y 6= x, and for any x ∈ X,
u, v ∈ V (T ) such that w(x, u), w(x, v) <∞, u and v are incomparable.

Then in polynomial time, we can construct a least-resolved DS-tree
(D, l) and time-consistent LGT network N such that for any integer k,
(T,X,w) has an incomparable assignment of cost at most k if and only
if there exists a binary refinement (D′, l′) of (D, l) such that (D′, l′) is
N -reconcilable using at most 2k transfers.

By setting R = R(D, l), Lemma 5 implies that R is N -consistent
if and only if (T,W, x) has an incomparable assignment of cost < ∞,
i.e. (T,W, x) is a Yes-instance of ACT. As ACT is NP-hard (under the
restrictions in Lemma 5), so is NC. Moreover, for any integer k, Lemma 5
implies that R is N -consistent using at most k′ = 2k transfers if and only
if (T,W, x, k) is a Yes-instance of MWACT. As MWACT is W [1]-hard
(under the restrictions in Lemma 5), so is TMNC.

Theorem 1. NC is NP-hard and TMNC is W [1]-hard.
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4 Dynamic programming for bounded degree DS-trees

In this section, we show that given a relation graph R and its least-
resolved DS-tree (D, l), if every node of D has degree at most k, then
one can decide if (D, l) is N -reconcilable in time O(2kk!k|V (D)||V (N)|4).
Moreover, if (D, l) is N -reconcilable, our algorithm finds the minimum
number of transfers required by any possible reconciliation. In particular,
if D is binary, then TMNC can be solved in polynomial time. Note that
in [22], it is shown that a DS-tree can always be reconciled with some
network in a similar reconciliation model, and the authors characterized
precisely when a DS-tree can be reconciled with a given network (although
transfers are not studied and, hence, not minimized as we do here). Let us
also mention that in a series of papers [20,38,22], it is shown how, given
a DS-tree with known transfer events but no species phylogeny, one can
find a species tree/network that it can be reconciled with.

The idea of the algorithm is similar to those of [39,28,37]. We use
dynamic programming over V (D), from the leaves to the root, and when
we encounter a non-binary node, we try every way of refining it. This is
a relatively standard procedure, although ensuring a valid reconciliation
while minimizing transfers requires care.

For each g ∈ V (D) and each s ∈ V (N), we denote by f(g, s) the
minimum number of transfers needed by a reconciliation (Dg, α) with
respect to N if we require αlast(g) = s (recall that Dg is the subtree of
D rooted at g). If g is a binary node, we try mapping gl and gr to every
pair of species s1 and s2 that allow e(g, last) ∈ {l(g),T}, and f(g, s) is
the minimum over all possibilities. For fixed s, s1 (resp. s2), the number

Algorithm 1: minTransferCost(D,N)

Data: A DS-tree D, an LGT network N
Result: ∞ if D is not N -reconcilable, or otherwise the minimum number of

transfers
1 Initialize f(g, s) = ∞ for all g ∈ V (D), s ∈ V (S)
2 for g ∈ V (D) in post-order traversal do
3 for s ∈ V (N) in post-order traversal do
4 if g is a leaf then
5 f(g, s) = 0 if σ(g) = s, otherwise f(g, s) = ∞
6 else
7 best = ∞
8 for (D′, l′) ∈ B(g) do
9 b = reconcileLBR((D′, l′), N, s, f)

10 if b < best then best = b;

11 f(g, s) = best

12 return mins∈V (N) f(r(D), s)
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Algorithm 2: reconcileLBR(D′, N, s, f)

Data: A binary DS-tree (D′, l′) which is an LBR of some subtree of D, an
LGT network N , the desired species s for r(D′), a cost function f on
the leaves of D′

Result: The minimum cost to reconcile D′ with N such that αlast(r(D′)) = s
1 Set f ′ = f (we maintain temporary costs f ′ for D′)
2 for g ∈ I(D′) in post-order traversal do
3 for s′ ∈ V (N) in post-order traversal do
4 if l′(g) = S then
5 if s′ has two children and (s′, s′l), (s

′, s′r) ∈ Ep then
6 cost12 = min(s1,s2)∈P (s′

l
)×P (s′r)(f

′(gl, s1) + t(s′l, s1) +

f ′(gr, s2) + t(s′r, s2))
7 cost21 = min(s1,s2)∈P (s′

l
)×P (s′r)(f

′(gr, s1) + t(s′l, s1) +

f ′(gl, s2) + t(s′r, s2))
8 f ′(g, s′) = min(cost12, cost21)

9 else if s′ is the tail of a secondary arc (s′, s′′) (s′′ ∈ {s′l, s′r})
then

10 cost12 = 1 + min(s1,s2)∈P (s′)×P (s′′)(f
′(gl, s1) + t(s′, s1) +

f ′(gr, s2) + t(s′′, s2))
11 cost21 = 1 + min(s1,s2)∈P (s′)×P (s′′)(f

′(gr, s1) + t(s′, s1) +
f ′(gl, s2) + t(s′′, s2))

12 f ′(g, s′) = min(cost12, cost21)

13 else if l′(g) = D then
14 f ′(g, s′) =

min(s1,s2)∈P (s′)×P (s′)(f
′(gl, s1) + t(s′, s1) + f ′(gr, s2) + t(s′, s2))

15 return f ′(r(D′), s)

of transfers required on the branch (g, gl) (resp. (g, gr)) is the minimum
number of secondary arcs on a path from s to s1 (resp. s2). This path
would constitute the sequence α(gl) (resp. α(gr)). Then f(g, s) can be
computed from these values, plus those of f(gl, s1) and f(gr, s2). If g
is a non-binary node with children g1, . . . , gk, we simply try to refine g
in every possible way, then do as in the binary case. In such a binary
refinement B of g, we may treat the g1, . . . , gk nodes of B as leaves and
use the previously computed f(gi, s

′) values for each (gi, s
′) pair. Let us

turn to the algorithmic details.

Let g ∈ I(D) with children g1, . . . , gk. A binary DS-tree (D′, l′) with
root g and leafset g1, . . . , gk such that l′(g′) = l(g) for every g′ ∈ I(D′)
will be called a local binary refinement of g (we write LBR for short). We
denote by B(g) the set of possible LBRs of g. For s ∈ V (N), denote by
P (s) the set of vertices of N that can be reached by some directed path
starting from s, and let t(s, s′) denote the minimum number of secondary
arcs necessary to go from s to s′ (note that t(s, s′) is easy to compute
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using weighted shortest path algorithms). We let t(s, s′) = ∞ if there is
no path from s to s′.

The algorithm minTransferCost traverses D in a post-order traver-
sal and, for each node g and each LBR D′ in B(g), calls reconcileLBR
to reconcile D′. Note that in the case that g is binary, only one LBR is
tested, namely the tree with two leaves gl and gr.

The proof of correctness can be done by induction over the height
of Dg and can be found in the Appendix. For the complexity, we first
compute the all-pairs shortest paths in N in time O(|V (N)|3) (this is only
done once and will not contribute to the final complexity). It is known
that the number of binary trees on k leaves is (2k − 3)!! = O(2kk!) [10]
which bounds the size of each set of LBRs. The main algorithm computes
B(g) up to |V (D)||V (N)| times. Each member of each B(g) results in a
call to reconcileLBR, which is done with a tree D′ on at most k leaves.
Then in this subroutine for each (g, s) pair with g ∈ V (D′) and s ∈
V (N), O(|V (N)|2) pairs of the form (s1, s2) are tested – this takes time
O(k|V (N)|3). The total time is thus O(2kk!k|V (D)||V (N)|4). The space
taken by the algorithm is O(|V (D)||V (N)|+|V (N)|2). To see this, observe
that O(|V (N)|2) space is needed to store the aforementioned all-pairs
shortest path values and O(|V (D)||V (N)|) space is needed for the f(g, s)
values. Each enumerated (D′, l′) ∈ B(g) takes space O(k) = O(|V (D)|),
which does not add to the space complexity if only the current such (D′, l′)
is kept in memory at all time. Also, one can check that reconcileLBR
can be done without additional space (the P (s) sets can be computed on
the fly each time when needed).

Theorem 2. Algorithm minTransferCost is correct and runs in time
O(2kk!k|V (D)||V (N)|4) and space O(|V (N)||V (D)|+ |V (N)|2).

Note that while we focused on minimizing the contribution of the k
parameter in the above algorithm, it is plausible that techniques devel-
oped for similar dynamic programming algorithms in [28,37] could help
reduce the |V (D)||V (N)|4 portion of the complexity. In essence, a factor
of |V (N)|2 is saved in [28,37] by defining f(g, s) as the best cost of a
reconciliation in which αlast(g) is mapped to any node reachable from s
(instead of requiring s itself), which avoids having to minimize over all
reachable pairs (s1, s2) for every node of D as in our algorithm.

5 With unknown transfer highways

The set of secondary arcs on a species network cannot always be known
with confidence. In fact, reconciliation is sometimes used to infer such
arcs on a given species tree [40].
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In this section, we remove the assumption that transfer arcs are known.
We are given a species tree S with |L(S)| > 1, and the secondary arcs
Es are to be determined in a time-consistent manner. The question is
whether, for a relation graph R, there is a species network N with base
tree T0(N) = S such that R is N -consistent.

Definition 5. Let S be a species tree. We say that a relation graph R
is S-base-consistent (using k transfers) if there exists a time-consistent
LGT network N such that T0(N) = S and R is N -consistent (using k
transfers).

We will show that a relation graph R is always S-base-consistent ,
provided there is a DS-tree (D, l) that displays R. In fact, we prove that
any binary DS-tree can be made to “agree” with any species tree, no
matter how inconsistent they appear to be (provided that each DS-tree
leaf can be mapped to a corresponding species tree leaf).

Beforehand, we can easily establish the equivalence between rela-
tion graphs and DS-trees as we did for N -consistency. We say that a
DS-tree (D, l) is S-base-reconcilable (using k transfers) if there exists a
time-consistent species network N such that T0(N) = S and (D, l) is
N -reconcilable (using k transfers).

Lemma 6. Let R be a relation graph and S be a species tree. Then R
is S-base-consistent (using k transfers) if and only if there exists a least-
resolved DS-tree (D, l) that displays R and a binary refinement (D′, l′) of
(D, l) such that (D′, l′) is S-base-reconcilable (using k transfers).

To show that any DS-tree (D, l) is S-base-reconcilable, we add to S a
set of secondary arcs Es of size O(h(D)|V (S)|2), where h(D) is the height
of D (see below). We then obtain a reconciliation α in which e(αlast(u)) =
T for every internal node u of D, which might be necessary in some
cases. For a node v ∈ V (D), we denote by d(v) the depth of v, which is
the number of edges on the path between v and r(D). The height of D,
denoted h(D), is the maximum depth of a node of D. Let m = |L(S)|, and
let (s1, . . . , sm) be an arbitrary ordering of L(S). Recall that for i ∈ [m],
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si is a leaf of S, and that p(si)si refers to the edge from the parent of si to
si. We construct the network N(D) from S using the following algorithm:

Algorithm 3: constructNetwork(D,S)

1 for d = 0 to h(D) + 1 do
2 for i = 1 to m do
3 for j = 1 to m, j 6= i do
4 Subdivide the arc p(si)si, creating a donor node

dondi→j ;

5 Subdivide the arc p(sj)sj , creating a receiver node

recdj←i ;

6 Add the secondary arc (dondi→j , rec
d
j←i) to Es ;

Thus we add every transfer from the s1 branch to the si branch with
i 6= 1, then every transfer from the s2 branch to the other si branches,
and so on, and repeat this process h(D)+2 times. Note that p(si) changes
with each subdivision. It is not hard to see that N(D) is time-consistent,
since each time we insert a new arc (x, y), its two endpoints x and y are
below every other previously inserted node.

Lemma 7. Let (D, l) be any binary DS-tree and let N := N(D) be the
species network obtained from S after applying Algorithm 3. Then (D, l)
is N -reconcilable.

The detailed proof can be found in the Appendix. The idea is that

each v ∈ I(D) at depth d(v) has the secondary edge (don
d(v)
i→j , rec

d(v)
j←i)

at its disposal. It can be shown that for any v ∈ I(D) and any distinct

si, sj ∈ L(N), Dv can be reconciled with N such that α(v) = (don
d(v)
i→j).

The idea is illustrated in Figure 3. The highest node of D is mapped to
a highest donor node of N , and the descendants transfer back and forth,
each time being mapped to a deeper donor node of N .

Theorem 3. A relation graph R is S-base-consistent if and only if there
exists a DS-tree (D, l) that displays R.

Therefore, deciding if a relation graph R is S-base-consistent can be
done in polynomial time.

Thus, unlike N -consistency, deciding S-base-consistency of R can be
done quickly by verifying if R admits a DS-tree. However, the explanation
of R resulting from the above algorithm will produce scenarios with many
transfers, all of which are located between a leaf and its parent. Thus it
makes sense to ask if there is a scenario with at most k transfers. This
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Fig. 3: On the left, a species tree with two leaves, with the horizontal arcs
inserted by the algorithm On the right, a DS-tree in which every internal
node is labeled S initially (not shown) which each become a transfer node
which we can then label TS (the leaves of D depict the species of the gene,
we omit giving each gene a name).

problem is closely related to reconciling a gene tree with a species tree
while minimizing the number of transfers. In [40], this problem is shown
to be NP-hard.

In fact, we present a reduction for minimizing transfers that is very
similar in spirit to the one given in [40]. There are, however, many dif-
ferences between their problem and ours that prevent us from using the
previous reduction as a black box for our purposes. First, our definition
of reconciliation is different, and in particular, in [40], transfer-loss events
are not allowed. Also, in the DS-tree formulation derived from Lemma 2,
we are given which nodes of D must be speciations, and which must be du-
plications. Finally, the authors require that the output network contains
no directed cycle, whereas we require time-consistency, which is more re-
strictive. We invite the interested reader to consult the last section of the
Appendix for details.

Theorem 4. The problem of deciding if a relation graph R is S-base-
consistent using k transfers is NP-hard, even if the least-resolved DS-tree
(D, l) for R is binary.

6 Discussion

In this work, we have shown that consistency of relations in the presence
of transfers is computationally hard to deal with, making its application
difficult in practice. One possible avenue would be to attempt to apply
our FPT algorithm to real datasets. A similar algorithm was reported
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in [28] to be able to handle nodes with up to 8 children, so a next step
would be to check the size of non-binary nodes of DS-trees. It would
also be interesting to study the problem of error correction of relations
in the presence of transfers - although this is almost certainly NP-hard,
approximation or FPT algorithms may be applicable.
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of phylogenetic networks with lateral gene transfers. Alg. Mol. Biol., 10(1):1–15,
2015.

6. R. Dondi, M. Lafond, and N. El-Mabrouk. Approximating the correction of
weighted and unweighted orthology and paralogy relations. AMB, 12(1):4, 2017.

7. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer Publishing Company, Incorporated, 2013.

8. D. M. Emms and S. Kelly. Orthofinder: solving fundamental biases in
whole genome comparisons dramatically improves orthogroup inference accuracy.
Genome Biology, 16(1):1, 2015.

9. M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameterized
complexity of multiple-interval graph problems. Theo. Comp. Sci., 410(1):53 – 61,
2009.

10. J. Felsenstein and J. Felenstein. Inferring phylogenies, volume 2. Sinauer associates
Sunderland, MA, 2004.

11. W. M. Fitch. Distinguishing homologous from analogous proteins. Systematic
Biology, 19(2):99–113, 1970.

12. A. R. Francis and M. Steel. Which phylogenetic networks are merely trees with
additional arcs? Systematic biology, 64(5):768–777, 2015.

13. T. Gabaldón and E. V. Koonin. Functional and evolutionary implications of gene
orthology. Nature Reviews Genetics, 14(5):360–366, 2013.

14. M. Geiß, J. Anders, P. F. Stadler, N. Wieseke, and M. Hellmuth. Reconstruct-
ing gene trees from fitch’s xenology relation. Journal of mathematical biology,
77(5):1459–1491, 2018.

15. M. Geiß, M. Hellmuth, Y. Long, and P. F. Stadler. A short note on undirected
fitch graphs. arXiv preprint arXiv:1712.01544, 2017.
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Appendix

Here we include the details of the proofs that were left out of the main
text.

Lemma 2. Let N be an LGT network and R = (Γ,E) a relation graph.
Then R is N -consistent (using k transfers) if and only if there exists a
DS-tree (D, l) for Γ such that R(D, l) = R and such that (D, l) is N -
reconcilable (using k transfers).

Proof. (⇒) Let (G,α) be a gene tree reconciled with N such that (G,α)
displays R using k transfers, and let e∗ be a labeling such that e∗(u, i) ∈
{TS,TD} if e(u, i) = T, e∗(u, i) = e(u, i) if e(u, i) 6= T, and if xy ∈ E then
e∗(lcaG(x, y), last) ∈ {S,TS}, and otherwise e∗(lcaG(x, y), last) ∈
{D,TD}.

Now define a binary DS-tree (D, l) as follows. Let D = G, and let
l(u) = S if e∗(αlast(u)) ∈ {S,TS}, and l(u) = D otherwise (in which case
e∗(αlast(u)) ∈ {D,TD}). Observe that by definition of e∗, if l(lcaD(x, y)) =
S then xy ∈ E, and if l(lcaD(x, y)) = D then xy /∈ E. Thus we have that
R = R(D, l). Also, note that (D, l) is N -reconcilable using k transfers,
since α satisfies the conditions of Definition 4.

(⇐): let (D, l) be a DS-tree such that R(D, l) = R. Note that D is
not necessarily binary. Let (D′, l′) be a binary refinement of (D, l) such
that (D′, l′) is N -reconcilable (such a refinement is assumed to exist by
the lemma statement and by the definition of N -reconcilable for non-
binary gene trees). Since (D′, l′) is N -reconcilable, there exists α′ such
that (D′, α′) is a reconciled gene tree with respect to N such that for
every u ∈ I(D′), l′(u) = S implies e(αlast(u)) ∈ {S,T} and l′(u) = D
implies e(αlast(u)) ∈ {D,T}. Define e∗ as follows: if e(u, i) 6= T, then
e∗(u, i) = e(u, i); otherwise if e(u, i) = T, if l′(u) = S then e∗(u, i) = TS

and if l′(u) = D then e∗(u, i) = TD. Note that no additional transfer is
created in this manner, and hence e∗ still uses k transfers. Also, for any
pair of distinct genes x, y ∈ Γ with u = lcaD′(x, y), l′(u) = S implies
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e∗(αlast(u)) ∈ {S,TS} and l′(u) = D implies e∗(αlast(u)) ∈ {D,TD}. It
follows that (D′, α′) display R.

Lemma 3. Let H = (V = V1 ∪ V2 ∪ · · · ∪ Vk, E) be an instance of k-
Multicolored Clique. Then in polynomial time, we can construct an
instance (T,X,w) of ACT such that (T,X,w) has an incomparable as-
signment of weight < ∞ if and only if H has a k-multicolored clique.
Furthermore, if an incomparable assignment of weight w < ∞ exists,
then there exists an incomparable assignment with weight ≤ k′ = k2 + 2k,
and (T,X,w) satisfies the following properties:

– w(x, v) ∈ {0, 1,∞} for all x ∈ X, v ∈ V (T );

– w(x, v) = 0 for exactly one v for each x ∈ X;

– If w(x, v) = 0 then w(y, v) =∞ for all y 6= x;

– for any x ∈ X, u, v ∈ V (T ) such that w(x, u), w(x, v) < ∞, u and v
are incomparable.

Proof. Construction of ACT instance:

Let H = V = (V1∪V2∪· · ·∪Vk, E) be an instance of k-Multicolored
Clique. We now construct a tree T together with a set X and cost
function w : X × V (T )→ N0 ∪ {∞}. For each element x ∈ X, there will
be a single “in”-element x in of V (T ), for which w(x, x in) = 0. There
will also be some number of “out”-elements v for which w(x, v) = 1.

We begin by describing T . T is made up of a series of subtrees, each
of which will act as a gadget in our reduction from k-Multicolored
Clique. Every subtree consists of a root with several leaves as children.

The subtrees of T are as follows:

– A tree Start, with root s in and children class i in for each i ∈ [k];

– For each i ∈ [k], v ∈ Vi, a tree Choose v, with root v in, and children
class i out v, together with u to i out v for each u ∈ V \Vi such that
uv ∈ E;

– For each i ∈ [k], v ∈ Vi, a tree Cover v, with root v out, and children
count v in , together with v to j in for each j 6= i ∈ [k].

– For each i ∈ [k], a singleton tree consisting of the node count i out.

See Figure 4. Finally we add a root node whose children are the roots
of all the subtrees given above. This concludes our construction of T .

The set X contains all vertices from V . In addition it contains a ‘start’
element s, an element class i for each i ∈ [k], an element count v for each
v ∈ V , and an element v to j for each v ∈ Vi and j 6= i ∈ [k].
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Start

s in

class i in

. . .

Choose v

v in

u to i out vclass i out v

. . .

Cover v

v out

v to j incount v in

. . .

count i out

Fig. 4: Figures used in the reduction from k-Multicolored Clique to
ACT. Dashed lines represent some of the relations between nodes: If an
assignment f does not assign f(class i) = class i in, then it must assign
f(class i) = class i out v (for some v ∈ Vi). Similarly if f does not
assign f(v) = v in, then it must assign f(v) = v out. If f does not assign
f(count v) = count v in, then it must assign f(count v) = count i out.
Note also that if f does not assign f(v to j) = v to j in, then it must
assign f(v to j) = v to j out u for some u ∈ Vj adjacent to v, though
that relation is not depicted here.

The cost function w : X×V (T )→ N0∪{∞} is defined as follows: For
each i ∈ [k], v ∈ Vi and j 6= i ∈ [k], set w(s, s in) = w(class i, class i in) =
w(v, v in) = w(count v, count v in) = w(v to j, v to j in) = 0. For each
i ∈ [k] and v ∈ Vi, set w(class i, class i out v) = 1, set w(v, v out) = 1,
and set w(count v, count i out) = 1. (Note that there are therefore mul-
tiple elements x ∈ X for which w(x, count i out) = 1.) Finally, for each
i ∈ [k] and v ∈ Vi, and each edge uv ∈ E with u ∈ Vj , j 6= i ∈ [k],
set w(v to j, v to j out u) = 1. For all other x ∈ X and v ∈ V (T ), set
w(x, v) =∞.

This concludes our construction of our ACT instance (X,T,w). The
construction can be done in polynomial time.We observe that by con-
struction, w(x, v) ∈ {0, 1,∞} for all x ∈ X, v ∈ V (T ), w(x, v) = 0 for
exactly one v for each x ∈ X, and if w(x, v) = 0 then w(y, v) =∞ for all
y 6= x. To see that u and v are incomparable for x ∈ X, u, v ∈ V (T ) such
that w(x, u), w(x, v) < ∞, observe that each subtree in the construction
contains at most one node z with w(x, z) <∞ for each x ∈ X.

It remains to show that (T,X,w) has an incomparable assignment
of weight < ∞ if and only if H has a k-multicolored clique and that if
an incomparable assignment of weight w < ∞ exists, then there exists
an incomparable assignment with weight ≤ k′. To do this, we will first
show that the existence of a k-multicolored clique implies the existence
of an incomparable assignment with weight ≤ k′, and then show that the
existence of an incomparable assignment of weight w < ∞ implies the
existence of a k-multicolored clique.
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k-multicolored clique implies assignment of weight ≤ k′:
First suppose that a k-multicolored clique C exists, and let vi denote

the single vertex in C ∩ Vi, for each i ∈ [k]. Let f : X → V (T ) be
defined as follows: Set f(s) = s in. For each i ∈ [k], set f(class i) =
class i out vi. For each i ∈ [k], set f(vi) = vi out, and for all other v ∈ V
set f(v) = v in. For each i ∈ [k], set f(count vi) = count i out, and for
all other v ∈ V set f(v) = count v in. For each i ∈ [k], j 6= i ∈ [k], set
f(vi to j) = vi to j out vj (note that vi to j out vj exists because vj ∈ Vj
and vi, vj are adjacent). For all other v ∈ Vi, set f(v to j) = v to j in.

Observe that
∑

x∈X w(x, f(x)) = k+k+k+k(k−1) = k2+2k = k′. It
remains to show that f(x) and f(y) are incomparable for each x 6= y ∈ X.
As each of the subtrees described above are incomparable, it is enough to
show that for each subtree, there are no comparable y, z with y, z assigned
to different elements of X.

In Start, the root s in is assigned but none of the children class i in
are assigned, so we have no comparable assigned nodes.

In Choose v, if v = vi for some i ∈ [k], then the root vi in is not
assigned, and as all other nodes are children of vi in, there are no compa-
rable assigned nodes. For all other v in class Vi, the root vi in is assigned.
However, the child class i out v is not assigned (as class i is assigned
to class i out vi), and the other children u to i out v are not assigned
(u to i out v is only assigned if v = vi, u = vj for some i 6= j ∈ [k]).

In Cover v, if v = vi for some i ∈ [k], then the root vi out is assigned,
but none of its children vi to j in or count vi in are assigned, as vi to j
is assigned to vi to j out vj and count vi is assigned to count i out. For
other v ∈ V , the root v out is not assigned, and as all other nodes are
children of v out, there are no comparable assigned nodes.

The nodes count i out are the only nodes in T that may be assigned
to more than one element of X. However, by definition of f we have that
for each i ∈ [k], count vi is the only element assigned to count i out.

As
∑

x∈X w(x, f(x)) ≤ k′ and f(x), f(y) are incomparable for all x 6=
y ∈ X, we have that (X,T,w, k′) is a Yes-instance, as required.

Assignment of finite weight implies k-multicolored clique:

Suppose that f : X → V (T ) is an incomparable assignment such that∑
x∈X w(x, f(x)) <∞.

Note that f(s) = s in, as there is no other node z for which w(s, z) <
∞. It follows that f(class i) 6= class i in for each i ∈ [k]. Therefore
f(class i) = class i out v for some v ∈ Vi. Denote this v by vi. As
class i out vi is a child of vi in in Choose vi, we must have that f(vi) 6=
vi in, and so instead f(vi) = vi out. As vi out is the root of Cover vi, it
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follows that for each j 6= i ∈ [k], we cannot have f(vi to j) = vi to j in.
Therefore f(vi to j) = vi to j out u for some u ∈ Vj adjacent to vi. De-
note this u by uij .

It remains to show that uij = vj for each i 6= j ∈ [k], as this im-
plies that v1, . . . , vk form a clique. As f(vi to j) = vi to j out uij is
a child of uij in in Choose uij , we must have that f(uij) 6= uij in,
and so instead f(uij) = uij out. As count uij in is a child of uij out in
Cover uij , we must have that f(count uij) 6= count uij in and so instead
f(count uij) = count j out (recall that uij ∈ Vj). By a similar argument,
since f(vj) = vj out we also have f(count vj) = count j out. But then
f is not an incomparable assignment unless uij = vj (since f(count uij)
and f(count vj) are the same node, and therefore comparable). Therefore
we must have that uij = vj for all i 6= j ∈ [k], as required.

Lemma 5. Let (T,X,w) be an instance of ACT, such that w(x, v) ∈
{0, 1,∞} for all x ∈ X, v ∈ V (T ), w(x, v) = 0 for exactly one v for each
x ∈ X, if w(x, v) = 0 then w(y, v) =∞ for all y 6= x, and for any x ∈ X,
u, v ∈ V (T ) such that w(x, u), w(x, v) <∞, u and v are incomparable.
Then in polynomial time, we can construct a least-resolved DS-tree (D, l)
and time-consistent LGT network N such that for any integer k, (T,X,w)
has an incomparable assignment of cost at most k if and only if there exists
a binary refinement (D′, l′) of (D, l) such that (D′, l′) is N -reconcilable
using at most 2k transfers.

Proof. Let (T,X,w) be an instance of ACT satisfying the specified prop-
erties. We begin by adjusting T to ensure that it is binary. If an internal
node u has a single child, we add an additional child of u as a leaf of the
tree. If u has more than two children, we refine u into a binary tree with
the same leaf set (treating u as the root of this binary tree). For any new
node v introduced in this way, we set w(x, v) =∞ for all x ∈ X. Observe
that for the resulting tree T ′, two nodes u, v ∈ V (T ) are incomparable in
T if and only if they are incomparable in T ′. Thus, changing T in this
way gives us an equivalent instance.

So we may now assume that T is binary. We next describe how to
construct a least-resolved DS-tree (D, l) .

Let Γ be a set of genes as follows. For each x ∈ X, Γ contains two
new genes x left and x right. Let Σ contain species spec x left and
spec x right for each x ∈ X, with σ(x left) = spec x left, σ(x right) =
spec x right.

Let the DS-tree (D, l) contain a speciation node r as the root, and let
{gene x : X} be the set of children of r. For each x ∈ X, let gene x be a
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duplication node with children x left and x right. Note that (D, l) is a
least-resolved DS-tree.

We next describe how to construct the LGT network N , beginning
with the distinguished base tree T0(N). Initially, let T0(N) = T , the input
tree of our ACT instance (in its binary version). To avoid confusion with
the MWACT instance later, we rename each node v ∈ V (T ) to spec v.
In addition, for each x ∈ X let ux be the unique node in T for which
w(x, ux) = 0, with spec ux the corresponding node in N .

Now for each v ∈ V (T ), we will add spec v left and spec v right
as descendants (not necessarily children) of spec v, as follows. If spec v
is a leaf in T0(N), then add spec v left and spec v right as children of
spec v. Otherwise, add spec v left and spec v right as descendants of
different children of spec v. (This can be be done by subdividing any
arc incident to leaf descended from a given child of spec v, and adding
spec v left or spec v right as a child of the newly added node). Observe
that after spec v left and spec v right have been added, spec v is the
least common ancestor of spec v left and spec v right. Furthermore this
process does not change the least common ancestor of any pair of leaves.
Therefore, after doing this process for each v ∈ V (T ), we will have that for
every v ∈ V (T ), spec v is the least common ancestor of spec v left and
spec v right. When v = ux for some x ∈ X, we also denote spec v left
and spec v right by spec x left and spec x right respectively.

This completes the construction of the distinguished base tree; now we
describe how to add secondary arcs. For each x ∈ X and each v ∈ V (T )
with w(x, v) = 1, we do the following. Add a new tail node between
spec v left and its parent, add a new head node between spec x left and
its parent, and add an arc from the tail to the head as a secondary arc.
Similarly, add a new tail node between spec v right and its parent, and
add a new head node between spec x right and its parent, and add an
arc from the tail to the head as a secondary arc. Observe that after this,
spec v has paths to spec x left and spec x right in N , and these paths
each use one secondary arc. See Figure 5. Furthermore (by virtue of the
fact that w(y, ux) 6= 1 for any x, y ∈ X, and therefore a tail node is never
added above spec ux left or spec ux right), every path in N has at most
one secondary arc.

This completes the construction of the species network N , and our
problem instance. Observe that N is time-consistent, since each time we
insert a new secondary arc, its two endpoints are below every other pre-
viously inserted node. We now show that (T,X,w) has an incomparable
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assignment of cost at most k if and only if (D, l) is N -consistent using at
most 2k transfers.

spec ux

spec v spec x rightspec x left

. . .

spec v rightspec v left

. . .

Fig. 5: Part of the species network N constructed in the reduction from
ACT to NC. For each v ∈ T , spec v is the least common ancestor in N
of spec v left and spec v right. If w(x, v) = 1 and w(x, ux) = 0, then
secondary arcs (the thick lines) are added from an ancestor of spec v left
to an ancestor of spec x left = spec ux left, and from an ancestor of
spec v right to an ancestor of spec x right = spec ux right. Thus, there
are paths from spec ux to each of spec x left and spec x right using
0 transfers in total, and paths from spec v to each of spec x left and
spec x right using 2 transfers in total.

First suppose that (D, l) is N -consistent using at most 2k transfers.
We will first show the following claim. In this claim and its proof, we use
the terms ’ancestor’ and ’descendant’ to exclusively refer to ancestors or
descendants with respect to the distinguished base tree T0(N):

Claim 1 For x ∈ X, suppose u ∈ V (N) is such that there exist paths
from u to spec x left and from u to spec x right, using at most kx sec-
ondary arcs in total. If kx = 0 then u is an ancestor of spec ux, and
otherwise u is an ancestor of some spec v such that w(x, v) ≤ 1. More-
over, if u is not an ancestor of spec ux then kx = 2.

Proof. First, recall that spec ux is the least common ancestor of spec x left
and spec x right in T0(N). Since kx = 0 implies that u is an ancestor of
both spec x left and spec x right, we have that if kx = 0 then u is an
ancestor of spec ux.

Since there is a path from u to spec x left, u must be an ancestor
of spec v left for some v such that w(v, x) ≤ 1 (such nodes are the only
ones that have a path to spec x left, either using exclusively principal
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arcs or a using a single secondary arc). Similarly, u must be an ancestor
of spec v′ right for some v′ such that w(v′, x) ≤ 1. If v = v′ then u is an
ancestor of both spec v left and spec v right and is therefore an ancestor
of spec v, as required. So assume that v 6= v′. If u is an ancestor of spec v
or spec v′ then we are done, and otherwise u must be a descendant of
both spec v and spec v′ (since it is an ancestor of descendants of both of
these). But this implies that v and v′ are comparable, a contradiction as
w(x, v), w(x, v′) <∞.

Finally, we observe that kx < 1 only if u is an ancestor of at least
one of spec x left and spec x right. Therefore if kx < 2 and u is not an
ancestor of spec ux, it is a descendant of spec ux. But this again implies
a contradiction as u is an ancestor of some spec v with w(x, v) = 1, which
would then be a descendant of spec ux.

Now consider the binary refinement (D′, l′) of (D, l) that isN -consistent
using at most 2k transfers. Thus there exists α such that (D′, α) is a rec-
onciled gene tree with respect to N . Note that by construction of (D, l),
there is a rooted subtree in D′ whose leaves are the set of duplication
nodes {gene x : x ∈ X} and whose internal nodes are all speciation
nodes according to l′. For each x ∈ X, there are paths in D′ from gene x
to x left and to x right, and so there are paths in N from αlast(gene x)
to σ(x left) = spec x left and to σ(x right) = spec x right. It follows
from Claim 1 that αlast(gene x) is an ancestor of v for some v ∈ V (T )
such that w(x, v) ≤ 1. By construction of N , there are no paths to such a
v using a secondary arc, and therefore as all ancestors of x in D′ are spe-
ciation nodes, {αlast(gene x) : x ∈ X} must form the leaves of a subtree
in T . It follows that αlast(gene x) and αlast(gene y) are incomparable
for any x 6= y ∈ X.

Now we can define f : X → V (T ) as follows. For each x ∈ X, let
f(x) = ux if αlast(gene x) is an ancestor of spec ux, and otherwise let
f(x) be a v ∈ V (T ) such that w(x, v) ≤ 1 and αlast(gene x) is an an-
cestor of spec ux. As their ancestors αlast(gene x) and αlast(gene y) are
incomparable, it follows that f(x) and f(y) are also incomparable, for any
x 6= y ∈ X. Furthermore, by Claim 1 we have that either αlast(gene x)
is an ancestor of spec ux, or the paths from αlast(gene x) to σ(x left)
and to σ(x right) use 2 secondary arcs. Therefore the number of trans-
fer arcs used by α is 2 for every x ∈ X with w(x, f(x)) = 1. Thus
2k ≥ 2

∑
x∈X w(x, f(x)), and so f is an incomparable assignment with∑

x∈X w(x, f(x)) ≤ k, as required.
Now suppose that (T,X,w) has an incomparable assignment f : X →

V (T ) such that
∑

x∈X w(x, f(x)) ≤ k. We will show that (D, l) has a
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binary refinement (D′, l′) that is N -reconcilable using at most 2k trans-
fers. In particular, we will show that there is a reconciliation α such that
αlast(gene x) = spec f(x) for all x ∈ X.

Observe first that as f is an incomparable assignment, there exists a
subtree T ′ of T whose leaves are {f(x) : x ∈ X}. By refining the root r of
D into a subtree isomorphic to T ′, we get a refinement (D′, l′) such that
D′ with the leaves {x left, x right : x ∈ X} removed has a reconciliation
with N using 0 transfers. Furthermore this reconciliation α is such that
αlast(gene x) = spec f(x) for all x ∈ X. It remains to show how to
extend α to the leaves {x left, x right : x ∈ X} of D′.

For each x ∈ X, let Px left be a path inN from spec f(x) to spec x left
using a minimum number of secondary arcs. By construction, this path
uses 0 secondary arcs if w(x, f(x)) = 0, and at most 1 secondary arc if
w(x, f(x)) = 1. Similarly, let Px right be a path in N from spec f(x) to
spec x right using a minimum number of secondary arcs. Then for each
x ∈ X, we let α(x left) = Px left and α(gene x right) = Px right. It can
be seen that (D′, α) is a valid reconciliation with respect to N that agrees
with (D′, l′). Furthermore, α uses 2 transfers for each x ∈ X such that
w(x, f(x)) = 1, and no others. Therefore D′ is reconcilable using at most∑

x∈X 2w(x, f(x)) ≤ 2k transfers, as required.

Theorem 2. Algorithm minTransferCost is correct and runs in time
O(2kk!k|V (D)||V (N)|4).

Proof. We prove the following statement by induction: for each g ∈ V (D)
and s ∈ V (N), the algorithm finds the minimum number of required
transfers for a reconciliation between the subtree Dg and N such that g
is mapped to s. If g is a leaf of D, the statement is easy to see, so suppose
g ∈ I(D). Let (D̂g, α) be an optimal solution for Dg, s and N , i.e. D̂g is a
binary refinement of Dg, α is a reconciliation between D̂g and N such that
αlast(g) = s, and the pair (D̂g, α) minimizes the number t of required
transfers. If g is binary, then gl and gr are children of g in both Dg and D̂g.
Let s1 = αlast(gl) and s2 = αlast(gr). It is clear that α restricted to D̂gl

1

yields a reconciliation of D̂gl using f(gl, s1) transfers, since if there was a
better refinement of Dgl admitting a better reconciliation with gl mapped
to s1, then we could include this subsolution in (D̂, α) and obtain a lower
transfer cost. The same argument holds for gr and f(gr, s2). We thus need
to show that the algorithm will, at some point, consider the scenario of
mapping gl with s1 and gr with s2. If l(g) = S, two cases may occur,

1 By the restriction α′ of α to D̂gl , we mean α′(v) = α(v) for all strict descendants v
of gl, and α′(gl) = (αlast(gl))
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according to Definition 1: (1) e(αlast(g)) = S, in which case α1(gl) = sl
and α1(gr) = sr (or vice-versa, w.l.o.g.). This implies s1 ∈ P (sl) and
s2 ∈ P (sr), and this scenario is tested on line 8 of reconcileLBR; (2)
e(αlast(g)) = T, in which case (s, s′) is a transfer-arc, say s′ = sr without
loss of generality. Then α1(gl) ∈ {s, sl} and α1(gr) = sr (or vice-versa,
w.l.o.g.), which imply s1 ∈ P (s) and s2 ∈ P (sr). This is tested by line 12
of reconcileLBR. If l(g) = D, we have α1(gl) = α1(gr) = s and thus it is
only required that αlast(gl) ∈ P (s) and αlast(gr) ∈ P (s), which is tested
on line 14. Therefore, the desired scenario of mapping gl to s1 and gr to
s2 is considered.

One can also observe that no invalid mappings of gl and gr are con-
sidered by the algorithm (if l(g) = S, we test only the s1 and s2 that
allow e(αlast(g)) ∈ {S,T}, and similarly for l(g) = D). The fact that the
computed value f ′(g, s) (and hence f(g, s)) is minimum follows from the
induction hypothesis on gl and gr.

Suppose instead that g has children g1, . . . , gk, k ≥ 3. For a fixed
(D′, l′) ∈ B(g), by the induction hypothesis we have that f(gi, s

′) is cor-
rect for every i ∈ [k] and s′ ∈ V (N). Using the argumentation for the
binary case, it follows that after calling reconcileLBR, we have correctly
computed the minimum number of transfers for the tree obtained from Dg

after replacing g by its local binary refinement D′. The connected subtree
Bg of D̂ induced by g, g1, . . . , gk is in B(g), and hence minTransferCost
will find f(g, s) correctly when trying D′ = Bg. This concludes the proof,
since the time and space complexity of the algorithm was argued in the
main text. ut

Lemma 6. Let R be a relation graph and S be a species tree. Then R
is S-base-consistent (using k transfers) if and only if there exists a least-
resolved DS-tree (D, l) that displays R and a binary refinement (D′, l′) of
(D, l) such that (D′, l′) is S-base-reconcilable (using k transfers).

Proof. (⇒) Assume that R is S-base-consistent using k transfers. Then
there exists an LGT network N such that T0(N) = S and R is N -
consistent using k transfers. Then by Lemma 2, there is a DS-tree (D, l)
and a binary refinement (D′, l′) such that (D′, l′) is N -reconcilable us-
ing k transfers. Thus by definition, (D′, l′) is S-base-reconcilable using k
transfers.

(⇐) Assume that there is a DS-tree (D, l) that displays R and a
binary refinement (D′, l′) of (D, l) such that (D′, l′) is S-base-reconcilable
using k transfers. Then there is an LGT network N such that T0(N) = S
and (D′, l′) is N -reconcilable using k transfers. Again, by Lemma 2, R
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is N -consistent using k transfers. So R is also S-base-consistent using k
transfers. ut

Lemma 7. Let (D, l) be a binary DS-tree and let N := N(D) be the
species network obtained from S after applying Algorithm 3. Then (D, l)
is N -reconcilable.

Proof. We show that for any v ∈ I(D), the subtree (Dv, l) isN -reconcilable
(where here, we slightly abuse notation by using l to label Dv). Moreover,
we show that if v is not a leaf and si, sj ∈ L(S) are distinct, then there

is a reconciliation (Dv, α) with respect to N such that α(v) = (don
d(v)
i→j)

and e(αlast(v)) = T (here, and for the rest of the proof, d(v) refers to
the depth of v in D, and not its depth in Dv). We use induction on the
height h(Dv). First note that if h(Dv) = 0, then the statement is trivially
true.

As an additional base case, suppose that h(Dv) = 1 and fix some

don
d(v)
i→j , with i 6= j. Then both children vl and vr of v are leaves. Let

sp = σ(vl) and sq = σ(vr) for some p, q ∈ [m]. Note that p = q is possible.

We find two paths P1 and P2 that correspond to α(vl) and α(vr).

We first claim that in N , there exists a directed path P1 = (don
d(v)
i→j =

x1, x2, . . . , xk1 = sp) such that x2 = rec
d(v)
j←i (i.e. P1 starts with the

(don
d(v)
i→j , rec

d(v)
j←i) arc). Observe that there exists a directed path P ′1 from

rec
d(v)
j←i to sp. Indeed, if sj = sp, then rec

d(v)
j←i = rec

d(v)
p←i is an ancestor of

sp and P ′1 obviously exists. Otherwise, P ′1 starts from rec
d(v)
j←i, goes to its

descendant don
d(v)+1
j→p , takes the (don

d(v)+1
j→p , rec

d(v)+1
p←j ) arc and then goes

to sp (observe that don
d(v)+1
j→p does exist, since the first loop of the algo-

rithm creating N takes c from 1 to h(D) + 1, and d(v) ≤ h(D)). Since P ′1
exists and (don

d(v)
i→j , rec

d(v)
j←i) is an arc of N , the P1 path exists.

By the same arguments, there is a path P2 = (don
d(v)
i→j = y1, y2, . . . , yk2 =

sq).

Now, the existence of P1 and P2 imply that we can make v a transfer

node. More precisely, we let α(v) = (don
d(v)
i→j), α(vl) = (x2, x3, . . . , xk1 =

sp) and α(vr) = (don
d(v)
i→j , y2, y3, . . . , yk2 = sq). Set e(αlast(v)) = T and

e(vl, k) ∈ {SL,TL, ∅} for k ∈ [|α(vl)| − 1] depending on what type of arc
xkxk+1 is, then do the same for each e(vr, k) and k ∈ [|α(vr)| − 1]. We

have αlast(v) = don
d(v)
i→j , α1(vl) = rec

d(v)
i←j and α1(vr) = don

d(v)
i→j , and since

(don
d(v)
i→j , rec

d(v)
j←i) ∈ Es(N), condition a.4 of Definition 1 is satisfied, and
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so α is a reconciliation in which e(αlast(v)) = T. This proves the base
case.

Let v ∈ V (D) such that h(Dv) > 1, and assume now by induction that
the claim holds for any internal node v′ such that Dv′ has height smaller
than h(Dv). Let vl, vr be the children of v. At least one of vl, vr must be
an internal node, say vr without loss of generality. Suppose first that vl
is a leaf. As before, in N there is a path P1 = (x1, x2, . . . , xk1) starting

with the (x1, x2) = (don
d(v)
i→j , rec

d(v)
j←i) arc and that goes to xk1 = σ(vl). As

for vr, by induction Dvr is N -reconcilable by some reconciliation (Dvr , α
′)

such that α′(vr) = (don
d(v)+1
i→j ). Now, in N there is a path P2 = (don

d(v)
i→j =

y1, y2, . . . , yk2 = don
d(v)+1
i→j ) from don

d(v)
i→j to don

d(v)+1
i→j in which each arc

is in Ep(N). We can obtain the desired reconciliation α from α′ in the

following manner. First let α(v) = (don
d(v)
i→j) and α(vl) = (x2, x3, . . . , xk1).

For every strict descendant v′r of vr, let α(v′r) = α′(vr), and finally let

α(vr) = (don
d(v)+1
i→j = y1, y2, y3, . . . , yk2 = don

d(v)+1
i→j ). As in the base case,

we can set e(αlast(v)) = T and satisfy condition a.4 of Definition 1. We set
e(vr, k) ∈ {SL,TL, ∅} accordingly for every k ∈ [|α(vr)|−1] (depending on
what type of arc xkxk+1 is) and set e(αlast(vr)) = e(α′last(vr)). Finally we
set e(αk(v

′
r)) = e(α′k(v

′
r)) for every strict descendant v′r of vr and every

k ∈ [|α(v′r)|]. We have that α(v), α(vl) and α(vr) satisfy Definition 1,
e(αlast(vr)) = e(α′last(vr)) and every other gene-species mapping and
event is unchanged from α′. It follows that α is a reconciliation. Since
e(αlast(v)) = T, the claim is proved for this case.

If instead both vl, vr ∈ I(D), then by induction, Dvl is N -reconcilable

with reconciliation αl such that αl(vl) = (don
d(v)+1
j→i ) (notice the use

of j → i and not i → j). Moreover, Dvr is N -reconcilable with rec-

onciliation αr such that αr(vr) = (don
d(v)+1
i→j ). In N , there is a path

P1 = (x1, x2, . . . , xk1) starting with the (x1, x2) = (don
d(v)
i→j , rec

d(v)
j←i) arc

that goes to xk1 = don
d(v)+1
j→i . There is also a path P2 = (y1, y2, . . . , yk2)

from y1 = don
d(v)
i→j to yk2 = don

d(v)+1
i→j that uses only arcs from Ep(N).

Thus as before, we can make v a transfer node. That is we set α(v) =

(don
d(v)
i→j) and e(αlast(v)) = T, α(vl) = (x2, . . . , xk1 = don

d(v)+1
j→i ) and

α(vr) = (don
d(v)
i→j = y1, y2, . . . , yk2 = don

d(v)+1
i→j ). We set e(vl, k), e(vr, k

′) ∈
{SL,TL, ∅} accordingly for every k ∈ [|α(vl)| − 1], k′ ∈ [|α(vr)| − 1], set
e(αlast(vl)) = e(αllast(vl)), e(αlast(vr)) = e(αrlast(vr)), and keep every
other gene-species mapping and event from αl and αr unchanged. In this
manner α(v) satisfies Definition 1, and α is a reconciliation. Again since
e(αlast(v)) = T, the claim is proved. ut
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Theorem 3. A relation graph R is S-base-consistent if and only if there
exists a DS-tree (D, l) such that R(D, l) = R.

Proof. If there is no DS-tree (D, l) such that R(D, l) = R, then by
Lemma 2 there exists no species network N with which R is consistent,
and thus R cannot be S-base-consistent. Conversely, let (D′l′) be a DS-
tree such that R(D′, l′) = R, and let (D, l) be a binary refinement of
(D′, l′) (recalling that R(D, l) = R(D′, l′) = R). Then by Lemma 7,
(D, l) is N(D)-reconcilable, where the network N(D) is the one con-
structed from S by the algorithm described above. By Lemma 2, R is
N(D)-consistent and thus R is also S-base-consistent. ut

Proof of Theorem 4: NP-hardness of minimizing transfers with
unknown transfer highways

The formal problem that we show NP-hard here in the following.

Transfer Minimization Species Tree Consistency (TMSTC):
Input: A relation graph R, a species tree S, an integer k.
Question: Is R S-base-consistent using at most k transfers?

We reduce the feedback arc set problem to TMSTC.

Feedback Arc Set (FAS):
Input: A directed graph H = (V,A) and an integer k.
Question: Does there exist a feedback arc set of size at most k, i.e. a set
of arcs A′ ⊆ A of size at most k such that H ′ = (V,A \ A′) contains no
directed cycle?

Given a FAS instance H = (V,A), we construct a DS-tree (D, l) and
a species tree S such that H admits a feedback arc set of size at most
k if and only if R(D, l) is S-base-consistent using at most K = 2|A| + k
transfers.

A caterpillar is a rooted binary tree in which every internal node has
exactly one child that is a leaf, except for one node that has two leaf chil-
dren. We denote a caterpillar on leafset x1, x2, . . . , xn by (x1|x2| . . . |xn),
where the xi nodes are ordered by depth in non-decreasing order (thus x1
is the leaf child of the root). A subtree caterpillar is a rooted binary tree
obtained by replacing some leaves of a caterpillar by rooted subtrees. If
each xi is replaced by a subtree Xi, we denote this by (X1|X2| . . . |Xn).
If some Xi is a leaf xi (i.e. Xi a tree with one vertex xi), we may write
(X1| . . . |Xi−1|xi| . . . |Xn).
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Given the FAS instance H = (V,A), first order V and A arbitrarily,
and denote V = (v1, v2, . . . , vn) and A = (a1, a2, . . . , am). The species tree
S has a corresponding subtree for each vertex of V and each arc of A.
For each vertex vi ∈ V , let Svi be a caterpillar (vi,1|vi,2| . . . |vi,2K) with
2K leaves. For each j ∈ [2K], denote zi,j = p(vi,j) (noting that zi,2K−1 =
zi,2K). Then, for each arc a ∈ A, let Sa be the binary tree on two leaves
pa, qa. Then S is the subtree-caterpillar (Sa1 |Sa2 | . . . |Sam |Sv1 |Sv2 | . . . |Svn).
See Figure 6.

The DS-tree (D, l) has one subtree for each arc of A. For each a =
(vi, vj) ∈ A, let Da = Di,j be a caterpillar with 4K + 2 leaves such that
Di,j = (v1i,1|v2i,1|v1i,2|v2i,2| . . . |v1i,2K |v2i,2K |wij,1|wij,2) (we will interchangeably
use the Da and Di,j notations whenever convenient). Here the indices of
the leaf labels indicates the species containing them, i.e. for each h ∈
[2K], σ(v1i,h) = σ(v2i,h) = vi,h, and σ(wij,1) = vj,1, σ(wij,2) = vj,2. Thus all

the leaves of L(Di,j) are from the Svi subtree, with the exception of wij,1
and wij,2 at the bottom. For each h ∈ [2K], the parent of v1i,h is labeled by

D whereas the parent of v2i,h is labeled by S. The parent of wij,1 and wij,2
is labeled by D. We define another tree D′a = D′i,j = (p1a|p2a|q1a|q2a|Di,j).

The parents of p1a and q1a are labeled D, whereas the parents of p2a and q2a
are labeled S (here σ(p1a) = σ(p2a) = pa and σ(q1a) = σ(q2a) = qa).

Finally, we let

D = (D′a1 |p
3
a2 |D

′
a2 |p

3
a3 |D

′
a3 | . . . |p

3
am−2
|D′am−2

|p3am−1
|D′am−1

|D′am)

where each p3ai is a new leaf with σ(p3ai) = pai . The purpose of the
p3ai is to enforce a binary DS-tree. The root is a speciation, and the main
path of D alternates labelings, i.e. for each 1 < i < [m], the parent of p3ai

Sv2

Sv1

Svn Svn−1

pam qam

pa2
qa2

pa1
qa1

v1,1v1,2

v1,2K−1 v1,2K

. . .

. . .
. . .

Sa1 Di,j = Da

v1i,1
v2i,1

v1i,2
v2i,2

v1i,2K

v2i,2K
wi

j,1 wi
j,2

. . .

p1a
p2a

q1a
q2a Da

D′i,j = D′a

D′a1

p3a2

D′a2

p3a3
. . .

D′am−2

p3am−1

D′am−1
D′am

DS

Fig. 6: The S andD trees constructed for our reduction. Duplication nodes
appear as squares, and the absence of a square indicates speciation.
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is labeled D and the parent of r(D′ai) is labeled S. The parent of r(D′am)
is labeled S.

It is not hard to see that this construction can be carried out in
polynomial time. Note that D is binary and is also a least-resolved DS-
tree. Thus by Lemma 6, R(D, l) is S-base-consistent using K transfers if
and only if (D, l) is S-base-reconcilable using K transfers.

Lemma 8. If H admits a feedback arc set A′ ⊂ A of size k, then (D, l)
is S-base-reconcilable using at most K = 2m+ k transfers.

Proof. The intuition behind the proof is as follows. Each Di,j subtree
and its D,S labeling could be part of a valid reconciliation with respect
to S, if it were not for the wij,1 and wij,2 leaves at the bottom, which
prevent their ancestors to be speciations. These need to be handled by
either making the two edges incident to wij,1 and wij,2 a transfer to vj,1
and vj,2 respectively, or better, by making the edge above their common
parent a transfer to some common ancestor of vj,1 and vj,2. The latter
option is preferred as it requires one less transfer, but it cannot be taken
for every Di,j subtree because we will likely create time-inconsistencies.
As it turns out, given a feedback arc set A′ of size k, we have a way of
taking these ‘double-transfers’ only k times. As mentioned before, this is
similar to the proof in [40]. The difficulty here however, is to ensure that
time-consistency is preserved and that the D, S labeling can be preserved.

We first show how to add secondary arcs to S in a time-consistent
manner in order to obtain N , by making the time function t explicit. We
will add more arcs than necessary, but this simplifies the exposition. Let
s1, . . . , sn+m−1 be the vertices on the r(S)− r(Svn) path in S (excluding
r(Svn)), ordered by depth in increasing order. Assign time slot t(s`) = `
for each ` ∈ [n+m− 1]. We then describe the transformation from S to
N in three steps.

Step 1: transfer arcs from qa` to Svi. We process each arc a` ∈
A for ` = 1, 2, . . . ,m in increasing order as such: first let (vi, vj) = a`
(i.e. vi, vj are the vertices of the a` arc in H). Assign time slot ` + 1 to
the parent of nodes pa` and qa` . Then, subdivide (qa` , p(qa`)), creating a
new node that we call send qa` to i. Next, subdivide (p(r(Svi)), r(Svi)),
creating a new node that we call recv i from qa` . Then add the secondary
arc (send qa` to i, recv i from qa`). See Figure 7(1) for an illustration.
Assign the time slot m+ n+ ` to the two newly created nodes.

Note that this process is repeated for each arc a` in order. Therefore,
p(r(Svi)) may change during the process as new secondary arcs are in-
serted. In the end, there is exactly one outbound transfer node inserted
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above each qa` , and |N+(vi)| inbound transfer nodes inserted above each
r(Svi), where N+(vi) is the set of out-neighbors of vi in H. One can check
that no time inconsistency is created so far, since every time a node is
inserted, it is added below every other internal node having a defined
time slot so far, and it is assigned a higher time slot (since m + n + ` is
always the highest time slot so far, for each ` ∈ [m]). Also note for later
reference that, assuming n ≤ m, t(p(r(Svi))) ≤ m+n+ ` for some ` ≤ m,
and therefore t(p(r(Svi))) ≤ 3m after these operations.

Svi

Svn Svn−1

pam qam

pa2
qa2

pa1
qa1. . .

. . .
a1 = (vi, vj)

S

Sv1

. . .

a2 = (v1, vj′)

am = (vi, vj′′)

1

2

m
m+ 1

m+ n− 1

m+ i

Sv1

Sv2

Sv3

v1,2K

v2,2K

v3,2K

v2 v3 v1In H ′:
l1 = 2, l2 = 3, l3 = 1

. . .

(1) (2)

Sv1

Sv2

Sv3

v1,2K

v2,2K

v3,2K

. . .

(3)

v1,1
v1,2

v2,1
v2,2

v3,1
v3,2

. . .

. . .

. . .

Fig. 7: An illustration of the modifications from S to N . (1) We first add
the transfers between the Sa` subtrees to the Svi subtrees. For the pur-
pose of the example, we have only illustrated the arcs a1 = (vi, vj), a2 =
(v1, vj′), am = (vi, vj′′) (the j, j′, j′′) indices are irrelevant for this step).
Here the node added above qa1 would be named send qa1 to i and its
endpoint is recv i from qa1 . (2) We then add “forward-transfers”, which
are secondary arcs from the bottom of Svli to the top of Svlj , where j > i.

Here we illustrate this step on a small example of H ′, with the topologi-
cal sorting (v2, v3, v1). The white nodes indicate that other transfer nodes
could be on the subpath due to the previous step. (3) We finally allow
transferring “backwards” from vi,2K to vj,1, j < i, then from vj,1 to vj,2.

For what follows, let H ′ = (V,A \ A′). Since H ′ is a directed acyclic
graph, it admits a topological sort, i.e. an ordering (vl1 , vl2 , . . . , vln) of V
such that if i < j, then (vlj , vli) is not an arc of H ′ (in other words, there
are no backwards arcs). We now add two new sets of arcs that are entirely
based on the ordering (vl1 , . . . , vln).
Step 2: transfer arcs from vli,2K to its successor subtrees. What
we want to achieve in this step is that for each vli , we can transfer from
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the parent of vli,2K to any subtree Svlh such that h > i. An example is
provided in Figure 7(2). Process each vertex vli ∈ V for i = 1, 2, . . . , n
in increasing order as follows. First we create the transfer nodes above
r(Svli ) that are destined to receive from the predecessors of vli . For each
j = 1, 2, . . . , i−1 in order, add a node recv li from lj on the edge between
r(Svli ) and its parent, and assign the time slot

t(recv li from lj) = (4 + i)Km+ j

Then, we create the nodes above vli,2K that are destined to send to the
successor subtrees of vli . For each j = i + 1, i + 2, . . . , n in increasing
order, add a node send li to lj on the (p(vli,2K), vli,2K) arc. For each such
j, assign time slot

t(send li to lj) = (4 + j)Km+ i

Then, for each i, j ∈ [n] with i < j, add a transfer arc from send li to lj
to recv lj from li. Note that this transfer arc satisfies our time consis-
tency requirement since t(send li to lj) = (4+j)Km+i = t(recv lj from li).
Also note that for each arc (vli , vlj ) in A \ A′, there is a corresponding
secondary arc from send li to lj to recv lj from li.

We argue that S is still time-consistent. We know already that sec-
ondary arcs so far have the same timing, so we must show that (1) no
node has a child with a greater time slot, and (2) there is a way to assign
a time slot to the nodes zi,1, . . . , zi,2K−1 within the Svi trees. For (1), all
the receiving and sending nodes inserted at the last step have a time slot
greater than 3m and are inserted below the nodes that had a time slot as-
signed at the previous step (which were assigned a time slot at most 3m).
Moreover, the recv li from lj nodes are inserted on the p(r(Svli ))r(Svli )
arc in increasing order of time, as well as the send li to lj nodes on the
(p(vli,2K), vli,2K) arc. Hence no inconsistency is created within the Svi
trees. For (2), note that for each i ∈ [m], the nodes zi,1, . . . , zi,2K−1
of Svi lying on the path between recv li from li−1 (above r(Svi)) and
send li to li+1 (at the bottom of Svi) all have an available time slot be-
tween (4 + i)Km + i − 1 and (4 + i + 1)Km + i, since there are 2K − 1
such nodes and there are Km+ 1 available time slots. Therefore, we can
assign a time to each zi,h so that time consistency holds. Note that all
internal nodes of S have been assigned a time slot so far.

Step 3: escape route from vli,2K to vlj ,1, then to vlj ,2. Again, process
each vertex vli for i = 1, 2, . . . , n in increasing order. We make, for j < i,
a “last-resort escape route” from vli,2K to vlj ,1, followed by a transfer arc
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going from vlj ,1 to vlj ,2. Taking these arcs in a reconciliation corresponds
to taking “backwards arcs”, i.e. that belong to A′. For that purpose, we
add, on the arc between vli,2K and its parent, i − 1 transfer nodes to
send backwards. Then on the arc between vli,1 and its parent, we add
n− i transfer nodes to receive from the front. This step is illustrated on
Figure 7(3).

More precisely, for each j = 1, 2, . . . , i−1, add a node backsend li to lj
on the edge between vli,2K and its parent. Assign a high time slot to
this node, say t(backsend li to lj) = (Km)10 + i + j. Then for each
j = i+1, i+2, . . . , n, add a node backrecv li from lj on the edge between
vli,1 and its parent. Assign t(backrecv li from lj) = (Km)10 + i+j. Note
that time consistency is still preserved by these node insertions. Then for
each i, j ∈ [n] with i > j, add a secondary arc from backsend li to lj to
backrecv lj from li. Again, these arcs are time-consistent since t(backsend li to lj) =
(Km)10 + i+ j = t(backrecv lj from li).

To finish the network, for each i ∈ [n], add a secondary arc (send12 i, recv12 i)
between the (p(vi,1), vi,1) arc and the (p(vi,2), vi,2) arc. In order to pre-
serve time-consistency, assign a large enough time slot, say m100 to both
newly created nodes. This finally concludes the construction. Let us call
the resulting network N .

For the remainder, let u, v ∈ V (N) and suppose that there is a path
from u to v in N that does not use a secondary arc. We denote this path
by [u . . v]. We will also denote by ]u . . v] the path [u . . v], but excluding
u from this path.

Reconciling (D, l) with N . We are finally ready to show that (D, l)
is N -reconcilable using at most K transfers. We begin by showing how
to reconcile Di,j for a = (vi, vj) ∈ A. For reasons that will become ap-
parent later, the edge above r(Di,j) will always be contain a transfer. To
be more precise, set α1(p(v

1
i,1)) = recv i from qa with e(p(v1i,1), 1) = ∅

(setting it up to receive a transfer). Then set αlast(p(v1i,1)) = zi,1 with

e(p(v1i,1), last) = D. Since there is a directed path from recv i from qa to

zi,1 that uses no secondary arc of N , α(p(v1i,1)) can be completed with the

appropriate SL events. Set α(p(v2i,1)) = (zi,1) and for each 2 ≤ h ≤ 2K−1,

set α(p(v1i,h)) = α(p(v2i,h)) = (zi,h) (we will handle the case h = 2K later).

Then set e(αlast(p(v1i,h))) = D and e(α1(p(v
2
i,h))) = S. Note that the as-

signed events are the same as in the DS labeling l of D, and that so
far α satisfies Definition 1. It is straightforward to set α(v1i,h) and α(v2i,h)
appropriately.
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Di,j = Da

v1i,1
v2i,1

v1i,2
v2i,2

v1i,2K

v2i,2K
wi

j,1 wi
j,2

. . .recv i from qa..zi,1

zi,1
zi,2

zi,2
v1i,2K−1

zi,2K−1

]zi,2K−1..send i to j]

send i to j

recv j from i v1i,2K

v2i,2K
wi

j,1 wi
j,2

. . .

v1i,2K−1

zi,2K−1

]zi,2K−1..backsend i to j]

backsend i to j
backrecv j from i..send12 j

. . .

When send i to j exists When send i to j does not exist

. . .
Svi Svj

vi,2K−1 vi,2K
vj,1 vj,2

. . .

send i to j

recv j from i . . .
Svi Svj

vi,2K−1 vi,2K
vj,1 vj,2

. . .

backsend i to j
backrecv j from i

Fig. 8: Top left: how the Di,j subtree is reconciled from its root down
to the parent of v1i,2K−1. Top center and top right : the two possible

reconciliations of Di,j . In the first case, we can handle the wij nodes using
a single transfer above Svj . In the second case, we must transfer on the
arc leading to vj,1, then use another to get to vj,2. Bottom: the transfer
highways of N used by both scenarios.

We now handle the nodes p(v1i,2K) and p(v2i,2K) (see Figure 8 for an

illustration). First denote by w the parent of both wij,1 and wij,2 in Di,j .
Suppose that a = (vi, vj) is not in A′. Recall the ordering vl1 , . . . , vln from
above. Then there are i′ and j′ such that i = li′ and j = lj′ , with i′ <
j′. Therefore N has a secondary arc (send li′ to lj′ , recv lj′ from li′) =
(send i to j, recv j from i) starting above vi,2K and ending above Svj .
We make the parent edge of w borrow this transfer arc. For that purpose,
set α(p(v1i,2K)) = ]zi,2K−1 . . send i to j] and α(p(v2i,2K)) = (send i to j),

setting e(p(v1i,2K), last) = D and e(p(v2i,2K), last) = T. For the child

leaves, set α(v1i,2K) = α(v2i,2K) = [send i to j . . vi,2K ]. Then we set
α(w) = [recv j from i . . zj,1] with e(w, last) = D. It is straightfor-
ward to check that α(wij,1) and α(wij,2) can be set without requiring any
additional transfer, since zj,1 is an ancestor of both vj,1 and vj,2.

Now, suppose instead that a = (vi, vj) ∈ A′. Then the transfer arc
used in the previous case does not exist, since it is backwards with respect
to our ordering. In this case, we must use the last-resort route, namely
the secondary arcs (backsend i to j, backrecv j from i) arc, then the
(send12 j, recv12 j) arc. More precisely, set α(p(v1i,2K)) = ]zi,2K−1 . . backsend i to j]

and α(p(v2i,2K)) = (backsend i to j), with e(p(v1i,2K), last) = D and

e(p(v2i,2K), last) = T. Then set α(v1i,2K) = α(v2i,2K) = [backsend i to j . . vi,2K ].
Then let α(w) = [backrecv j from i . . send12 j] with e(w, last) = T.
Set α(wij,1) = [send12 j . . vj,1] and α(wij,2) = [recv12 j . . vj,2]. One
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can check that α satisfies Definition 1 and in this case, Di,j requires two
transfers.

It remains to reconcile the rest of D. We exhibit α for the nodes of D′i,j
that are not in Di,j . Denote a = (vi, vj). In S, denote ra = p(pa) = p(qa).
Set α(p(p1a)) = α(p(p2a)) = (ra), and e(p(p1a)) = D, e(p(p2a)) = S (we
will adjust α(p(p1a)) later). Then set α(p(q1a)) = [ra . . send qa to i] with
e(p(q1a), last) = D, and α(p(q2a)) = (send qa to i). Recall that p(v1i,1) is

a child of p(q2a) and that α1(p(v
1
i,1)) = recv i from qa. Thus by setting

e(p(q1a)) = T we satisfy Definition 1. It is clear that the α values for the
leaves p1a, p

2
a, q

1
a and q2a can be set without requiring any additional trans-

fer. We have now reconciled D′i,j such that αlast(r(D′i,j)) = ra, adding
one transfer in the process.

What remains now are the nodes g1, g2, . . . , g`, ordered by increasing
depth, that lie on the path between r(D) and r(D′am) (excluding the
latter). We claim that none of these nodes requires any transfer. The
node g` is a speciation and has two children r(D′am−1

) and r(D′am): one
mapped by α to species ram−1 and the other to ram . Then we can set
α(g`) = (lcaS(ram−1 , ram)) and e(g`, last) = S, and adjust α(r(D′am−1

))
and α(r(D′am)) accordingly. Now, g`−1 = p(g`) is a duplication whose
other child is p3m−1, and thus it is safe to set α(g`−1) = (lcaS(ram−1 , ram))
as well and set e(g`−1, last) = D. Since the Da subtrees are ordered
in the same manner in D as the Sa subtrees in S, it is not hard to see
inductively that for i < ` − 1, if l(gi) = S, then gi has r(D′ah) as a child
for some h < m− 1, which is mapped to rah , and the other child is gi+1,
mapped to x := lcaS(rah+1

, rah+2
). Hence we can set α(gi) = (x, rah) and

adjust the α values of the two children of gi accordingly. If l(gi) = D,
we simply set α(gi) = α(gi+1). We are done with the reconciliation α
between D and N .

To sum up, if a /∈ A′, then D′a requires 2 transfers, and if a ∈ A′, then
D′a requires 3 transfers, and |A′| = k. Thus K = 2m + k transfers are
added in total. ut

We now undertake the converse direction of the proof. We will make
use of the following well-known fact on reconciliations.

Lemma 9. Let S be a species tree and let N be an LGT network obtained
by adding secondary arcs to S. Let (D,α) be a reconciliation with respect
to N . Let u ∈ I(D) such that e(u, last) = S and let v, w be two leaves
descending from u such that, for every node z on the path between u and
v or on the path between u and w, α(z) contains no T or TL event. Then
αlast(u) = lcaS(σ(v), σ(w)).
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Proof. First note that by the definition of a reconciliation, αlast(u) = S
implies that αlast(u) must exist in S, since only those nodes can be the
tail of two principal arcs in N (recall that this is required by speciation).

Assume without loss of generality that v descends from ul and w
from ur. Let Pv = (u = v1, . . . , va = v) be the path from u to v and
Pw = (u = w1, . . . , wb = w) the path from u to w. By the definition
of speciation, α1(ul) and α1(ur) are the two children of αlast(u). More-
over, by appending the paths α(v2), . . . , α(va) and eliminating possible
repetitions due to duplications, we obtain a path P ′v of N that uses only
principal arcs, starts at α1(ul) and ends at v. Similarly, appending the
paths α(w2), . . . , α(wb), we obtain a path P ′w of N that uses only prin-
cipal arcs, starts at α1(ur) and ends at w. Because α1(ul) and α1(ur)
are the children of αlast(u) and P ′v and P ′w use only Ep arcs, P ′v and P ′w
are vertex-disjoint. Thus αlast(u) is a node of N whose two children can
start disjoint paths that lead to v and w, respectively. The only node of
N from which this is possible is lcaS(σ(v), σ(w)). ut

Lemma 10. If (D, l) is S-base-reconcilable using at most K = 2m + k
transfers, then H admits a feedback arc set A′ ⊆ A of size at most k.

Proof. Suppose that (D, l) is S-base-reconcilable using at most K trans-
fers, let N be the species network such that T0(N) = S and let (D,α) a
reconciliation with respect to N using K transfers showing that (D, l) is
N -reconcilable. We divide this proof into a series of claims. Without loss
of generality, we assume that the secondary arcs on N are minimal, in
the sense that every secondary arc of N is used by α.

Claim 2 For every arc a = (vi, vj) ∈ A, in the D′i,j subtree, there is a
node x and an integer h such that e(x, h) ∈ {T,TL} and x does not belong
to Di,j.

Proof. Suppose for contradiction that the claim is false. Denote yp :=
p(p2a) and yq = p(q2a). Because there is no transfer, we have e(yp, last) =
e(yq, last) = S, by the orthology requirements of (D, l). By Lemma 9,
αlast(yp) = lcaS(σ(p2a), σ(q2a)) = p(pa) = p(qa). Now consider αlast(yq).
By definition of speciation and by the absence of transfers in α(p(p1a))
and α(yq), αlast(yq) must be a strict descendant of αlast(yp) = p(qa).
On the other hand, αlast(yq) is a strict ancestor of qa since e(yq, last) =
S. Moreover, αlast(yq) is a node of S (this is because e(yq, last) = S,
and thus by definition, αlast(yq) must be a node whose two children are
principal arcs). We have reached a contradiction, since S contains no node
that is a strict descendant of p(qa) and a strict ancestor of qa. ut
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Claim 3 Let (vi, vj) ∈ A. Then there is an internal node x of Di,j such
that αlast(x) is a node of Svi.

Proof. Suppose that for every internal node x of Di,j , αlast(x) is not
a node of Svi . Let h ∈ [2K] such that h is odd. We show that there
must be a transfer in some node of the path between v2i,h and v2i,h+1 in
Di,j . Let us assume that this is not the case. We can thus assume that
e(p(v2i,h), last) = S and that α(v2i,h) does not contain a TL event. It

follows that αlast(p(v2i,h)) is an ancestor of vi,h which, by assumption,
does not belong to Svi . Since we further assume that there is no trans-
fer in α(p(v1i,h+1)), α(p(v2i,h+1)) or α(v2i,h+1), by Lemma 9, we must have

αlast(p(v2i,h) = lcaS(σ(vi,h), σ(vi,h+1)). This node is in Svi , and we have
reached a contradiction. Therefore, some transfer must be present in some
node of the v2i,h − v2i,h+1 path.

This holds for every odd h, so Di,j has a least K transfers. But by
the previous claim, D′i,j has at least one transfer that is not in Di,j , so in
total D has strictly more than K transfers, a contradiction. ut

Claim 4 Let (vi, vj) ∈ A. Then in N , there is a node s of Svi such
that there exists a directed path P1 from s to vj,1 containing a secondary
arc (t1, t

′
1), and a directed path P2 from s to vj,2 containing a secondary

arc (t2, t
′
2), and such that Di,j uses these secondary arcs (i.e. for each

h ∈ {1, 2}, either (αi(x), αi+1(x)) = (th, t
′
h) for some x ∈ V (Di,j) and

integer i, or (αlast(x), α1(y)) = (th, t
′
h) for some x, y ∈ V (Di,j)). Note

that (t1, t
′
1) = (t2, t

′
2) is possible.

Proof. Let x be a node of Di,j satisfying Claim 3 above. Since s :=
αlast(x) is in the Svi subtree, and that x has descendants wij,1 and wij,2
mapped to vj,1 and vj,2, there must be a path from s to vj,1 and from s
to vj,2. Since s and vj,1 (or vj,2) are incomparable in S, these paths must
contain a secondary arc. Moreover, there must be such paths P1 and P2

and some node of Di,j on the x− vj,1 path (resp. the x− (vj,2) path) that
uses the (t1, t

′
1) arc (resp. the (t2, t

′
2) arc). ut

As specified in the previous claim, (t1, t
′
1) = (t2, t

′
2) is possible. In

essence, this happens when Svi is able to get to Svj . In the following, let

Â ⊆ A be the set of arcs such that (vi, vj) ∈ Â if and only if there is a
directed path in N from r(Svi) to r(Svj ). The set A′ = A \ Â will form
our feedback arc set, i.e. the arcs to remove to eliminate all cycles.

Claim 5 H ′ = (V, Â) contains no directed cycle.
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Proof. Suppose instead that in H ′, there is a cycle C = x1x2 . . . x`x1. By
the definition of Â, in N there is a directed path from r(Sxi) to r(Sxi+1)
for every i ∈ [`− 1], and from r(Sx`) to r(Sx1). Thus N contains a cycle,
contradicting time-consistency. ut

Claim 6 |Â| ≥ m− k.

Proof. Recall that by Claim 2, D has a transfer in D′i,j that is not in Di,j ,
and these together take up m transfers. Moreover by Claim 4, each Di,j

subtree uses at least one transfer. Since D uses at at most K = 2m + k
transfers, there can be at most k of the Di,j subtrees that use more than
one transfer, and hence at least m− k that only use one.

By Claim 4, for each (vi, vj) ∈ A, there is a directed path P1 in N from
r(Svi) to vj,1 and a directed path P2 from r(Svi) to vj,2, such that Di,j

uses the transfer arc (t1, t
′
1) from P1 and (t2, t

′
2) from P2. If Di,j uses one

transfer, we must have (t1, t
′
1) = (t2, t

′
2). This is only possible if t′1 = t′2

is an ancestor of lcaS(vj,1, vj,2) = r(Svj ). This shows that there are at
least m− k subtrees Di,j , and hence arcs (vi, vj) such that N has a path
from r(Svi) to r(Svj ). ut

We are done with the proof, since A′ = A \ Â is a feedback arc set of
H by Claim 5, and |A′| = |A| − |Â| ≤ m− (m− k) = k. ut

We have shown that that H has a feedback arc set of size k if and
only D is S-base-reconcilable using K = 2m+ k transfers. By Lemma 6,
H has a feedback arc set of size k if and only if the relation graph R(D)
is S-base-consistent using K transfers. Therefore we get the following.

Theorem 4. The TMSTC problem is NP-hard, even if the input relation
graph R has a corresponding least-resolved DS-tree that is binary.
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