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Abstract7

Given the ongoing antimicrobial resistance crisis, it is imperative to develop dosing regimens8

optimised for avoiding the evolution of resistance. The rate at which bacteria acquire resistance-9

conferring mutations to different antimicrobial drugs spans multiple orders of magnitude. By10

using a mathematical model and computer simulations, we show that knowledge of relative11

mutation rates can meaningfully inform the optimal combination of two drugs in a treatment12

regimen. We demonstrate that under plausible assumptions there is a linear relationship in13

log-log space between the optimal drug A:drug B dose ratio that maximises the chance of14

treatment success and the ratio of their mutation rates. This power law relationship holds15

for bacteriostatic and bactericidal drugs. If borne out empirically, these findings suggest there16

might be significant room to further optimise antimicrobial dosing strategies.17

Keywords: microbial evolution, mutation rates, mathematical modelling, antimicrobial re-18

sistance, combination therapy, evolutionary rescue.19

1 Introduction20

One of the key goals of designing antimicrobial treatment regimens must be to minimise the21

probability that resistance develops, alongside striving to rapidly clear the patient’s infection and22

avoid excessive toxicity. One valuable approach is to use multiple drugs, either in combination23

[1, 2] or sequentially [3, 4, 5, 6] such that even if a mutation conferring resistance to a single24

drug occurs, the mutant is still impacted by the other drug(s). Using multiple drugs, rather25

than just a larger dose of a single drug, may also reduce toxic side effects in the patient,26

especially if the drugs interact synergistically and hence allow for smaller concentrations to be27
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efficacious [7]. Combination therapy is supported by a significant body of empirical literature28

(reviewed in [8] and [9]), with positive results for example in laboratory evolution settings [1]29

and tuberculosis treatment [10]. A meta-analysis involving 4514 patients from 53 studies of30

multidrug-resistant gram-negative bacterial infections found an average reduction in mortality31

of 17% with combination compared to monotherapy [11].32

Many mathematical and computational models have been created to better understand and33

predict the evolution of resistance (reviewed in [12, 13]). In most models, a key parameter34

is the mutation rate: the probability that a cell division in a susceptible bacterium will give35

rise to a cell resistant to the drug in question. The higher the mutation rate, the more likely36

resistance is to develop (setting aside resistance arising from horizontal gene transfer). Because37

this relationship is trivial, in most mathematical models the mutation rate is fixed and then38

ignored, and other putatively more interesting phenomena are explored [14, 15, 16, 17, 18].39

Here, we show that in combination therapy, the relative mutation rates for each drug can be an40

important factor in choosing the optimal quantity of each drug to apply. This differs notably41

from the conventional wisdom that it is often best to use equal doses of two drugs (e.g. [19]).42

An important consideration in combination therapy is whether to use bacteriostatic drugs43

(i.e. drugs that inhibit growth), bacteriocidal drugs (i.e. drugs that kill bacteria), or both.44

Theoretical work has shown that when only one drug is present at a time, bacteriostatic drugs45

are usually more effective in minimising resistance evolution [20]. When two drugs are used46

in combination, theory suggests that pairing a bacteriostatic drug and a bactericidal drug is47

especially effective at both clearing the infection and reducing the probability of resistance48

evolving [19]. Moreover, the density-dependence and resource limitations of the bacterial49

population impact the relative efficacy of different drug modes of action [21].50

The rate at which resistance mutations to a given antimicrobial drug occur may depend51

on the bacterium that is targeted, the current resource availability or other environmental52

conditions. Even within one host species and constant conditions, resistance mutation rates can53

vary greatly by drug [22]. This is unsurprising, as different mechanisms of action may be more54

or less difficult for the bacteria to surmount or circumvent when sampling from the space of55

possible mutations. The distribution of fitness effects of possible resistance mutants can also vary56

greatly by type of drug used [23]. InMycobacterium tuberculosis, the infectious agent responsible57

for the most deaths per year worldwide [24], there is an approximately 400-fold difference in58

the mutation rate between two of the most commonly used first-line drugs, rifampicin and59

ethambutol [25]. That said, it is difficult to accurately compare estimated mutation rates for60

different drugs. This is because the mutation rate may depend on the drug concentration used61

(the higher the concentration, the fewer resistance mutations may be possible), and also because62

the stress response to some drugs may elevate the mutation rate itself [26]. To our knowledge,63

there is no centralised database of mutation rate estimates, but some example values from64

the literature for various drugs and species are provided in Table 1. Resistance mutation rates65

being orders of magnitude apart could reasonably be expected to prove important when choosing66

optimal dosing strategies. Intuitively, all else being equal, it is better to use drugs for which67
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resistance mutations arise at a lower ratewith lower mutation rates to minimise the probability68

of resistance developing.69

We formalise and interrogate this intuition under a variety of plausible assumptions, and70

develop theoretical predictions for how different resistance mutation rates should alter optimal71

dosing strategies. We find that a quadrupling of the ratio of mutation rates leads to a doubling72

in the optimal drug dosing concentration ratios favouring the less evolvable drug. This power73

law relationship is qualitatively robust to relaxing various simplifying assumptions.We find that74

there is a power law relationship between the ratio of mutation 55 rates and the optimal drug75

dosing concentrations.76

Table 1: Genome-wide probability of a resistance mutation per replication for various antibiotics
in Mycobacterium tuberculosis, Mycobacterium smegmatis, and Escherichia coli.
Drug (µg/mL) Bacteria Mutation probability (µ) References

Isoniazid (0.2 to 1) M. tuberculosis 2.6 · 10−8 to 3.2 · 10−7 [25, 27]
Rifampicin (1 to 8) M. tuberculosis 2.3 · 10−10 to 1.1 · 10−8 [25, 27, 28]
Streptomycin (2) M. tuberculosis 3.0 · 10−8 [25]
Ethambutol (5) M. tuberculosis 1.0 · 10−7 [25]

Rifampicin (100 to 500) M. smegmatis 2.2 · 10−10 to 9.2 · 10−8 [29]
Isoniazid (500 to 1000) M. smegmatis 1.2 · 10−9 to 1.2 · 10−7 [29]
Streptomycin (20 to 100) M. smegmatis 2.8 · 10−8 to 5.3 · 10−8 [29]
Kanamycin (100) M. smegmatis 1.7 · 10−8 [29]

Rifampicin (50) E. coli 7.0 · 10−9 [30]
Streptomycin (2) E. coli 2.7 · 10−9 [31]
Ciprofloxacin (1) E. coli 3.6 · 10−9 [32]

2 Methods77

We modelled a simple scenario where there is one species of bacteria and two arbitrary drugs,78

A and B, administered in combination at concentrations CA and CB that are constant over79

time (we later relax this assumption). After t hours the sizes of the susceptible, A-resistant,80

and B-resistant populations respectively are S(t), MA(t) and MB(t).81

To model drug mode of action and pharmacodynamics, we normalised the effective drug con-82

centration (Ei) for bacterial strain i ∈ {S,MA,MB} (that is, susceptible, A-resistant mutants,83

and B-resistant mutants respectively) and drug j ∈ {A,B} onto the [0, 1) interval using the84

sigmoid Emax model [33] (closely related to the more common Hill equation [34]). Here, zi,j85

is the drug concentration at which the half-maximal effect of drug j is achieved in strain i86

(denoted EC50 in [35]) and β is the shape parameter which determines the steepness of the87

function around z [36]:88

Ei(Cj) =

(
1 +

(
Cj

zi,j

)−βj
)−1

. (1)
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We consider drugs that are either bacteriostatic (denoted ϕj = 1) and only affect the cell89

division rate, or bactericidal (denoted ϕj = 0) and only affect the cell death rate, leaving out90

intermediate cases. We ignored the effect of intra-specific competitionresource on growth, such91

that the replication rate of strain i is a constant ri in the absence of drugs (this assumption92

is later relaxed in the simulations, but is necessary for analytical progress). While in most93

cases bacterial growth is resource-limited such that our analytical model would be unrealistic,94

in some cases e.g. if antibiotic treatment is started early by the human host before pathogenic95

bacteria have reached the resource limits of their niche, our model could be approximately96

accurate. Likewise, δi is a constant intrinsic death rate term, representing constant negative97

pressures from competition with other (non-modelled) bacterial species [37], and the host’s98

immune response. Combining, the drug-dependent replication, death, and net growth rates are99

growth and death rates are100

Ri = ri(1− ϕAEi(CA))(1− ϕBEi(CB)), (2)

Di = δi + (1− ϕA)Ei(CA) + (1− ϕB)Ei(CB), (3)

Gi = Ri −Di. (4)

Our model is based on ‘Bliss independence’ (introduced in [38]) which assumes that the101

two drugs have distinct, independent, cellular targets and modes of action [39]. In the case of102

bactericidal drugs, the null model of no synergistic or antagonistic drug interaction is given by103

the total mortality rate from the drug combination equalling the sum of the mortality rates104

that would ensue with each drug used in isolation. However, for bacteriostatic drugs, a null105

interaction means that each drug reduces the replication rate by the same factor in combination106

as when used in isolation. For a cell to die, it is sufficient for either drug to cause its death107

(akin to a logical OR gate), so these terms are added, whereas for a cell to divide both pathways108

impacted by the drugs must remain functional (akin to a logical AND gate), so the terms are109

multiplied.110

We denote the probability of a cell division event leading to a j-resistant daughter cell as111

j-resistance mutation rate µj , and ignore back-mutations and the (initially negligible) chance112

of double-mutations. We initially assume that the mutation rate is independent of the drug113

concentration used, though this assumption is later relaxed. Thus, a deterministic version of114

our model can be representedwe specify our model as the following system of ordinary differential115

equations (ODEs):116

dS

dt
= S(RS(1− µA − µB)−DS),

dMA

dt
= MA(RMA

−DMA
) + SRSµA,

dMB

dt
= MB(RMB

−DMB
) + SRSµB.

(5)

Along with the initial conditions, where only susceptible cells are present (S(0) = S0,117

MA(0) = 0, MB(0) = 0), this fully defines the mathematical model. To more realistically model118

the uncertainty inherent in growth and mutation, we employed a stochastic version of this119
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model. Specifically, for the computational implementation, we used the Stochastic Simulation120

Algorithm (also known as the Gillespie algorithm [40]) to evolve the system over time, with121

birth and death events given in Table 2. All simulations were performed using R v4.3.0 [41].122

To make evolving this stochastic systemthe system of ODEs computationally feasible, we used123

tau-leaping to perform many transitions in one step with the adaptivetau package [42, 43]. We124

used the future package to parallelise simulation runs [44]. To store, analyse, and visualise the125

simulation data we used the tidyverse set of packages [45, 46].126

Table 2: Transition events and rates for the Gillespie algorithm.
Event Transition Rate

S birth S → S + 1 SRS(1− µA − µB)
MA birth MA → MA + 1 SRSµA +MARMA

MB birth MB → MB + 1 SRSµB +MBRMB

S death S → S − 1 SDS

MA death MA → MA − 1 MADMA

MB death MB → MB − 1 MBDMB

The value we seek to maximise is the probability that the susceptible population is driven to127

extinction without resistance becoming established. This can be operationalised as the probabil-128

ity that S(t)+MA(t)+MB(t) = 0 for any time t. Trivially, arbitrarily large drug concentrations129

are optimal for this goal. However, toxic side effects for the host mean that drug concentrations130

must be restricted. We use a simple toxicity model with some fixed maximum allowable toxic-131

ity c, and both drugs contribute equally and linearly to this maximum, that is CA + CB ≤ c.132

To maximise the combined efficacy of the drugs, the highest allowable concentrations are used133

(CA + CB = c).134

The drugs are assumed to be equally effective, and their concentrations are scaled to be in135

units standardised to the potency of the drug in question, such that zS,A = zS,B = 1. We use a136

default value of the maximum replication rate of ri = 1 h−1, and of the Hill coefficient of β = 1,137

using convenient round numbers that are realistic for some bacteria and drugs [47]. Denoting138

the total chance of a mutation conferring resistance as µ = µA + µB, we use µ = 10−9 which139

is in the range of common values in Table 1. We use a starting population size of S0 = 109140

cells and an intrinsic death rate of δ = 1
3 , which allows resistance to occur sometimes but141

not inevitably, and which are plausible biological values [48]. Common values of the maximum142

drug-induced death rate of bactericidal drugs are anywhere from approximately 1 h−1 to 10 h−1
143

[47]. However the theoretical maximum efficacy of a bacteriostatic drug is 1, that is preventing144

100% of replications. To avoid skewing the model towards bactericidal drugs, we use a default145

value of 1 for the maximum drug-induced death rate too, which is at the lower end of common146

values. The more important point for this simple theoretical model is to use parameter values147

that highlight biologically relevant phenomena, rather than using maximally likely parameter148

values.149

Holding all other parameters constant, we seek a mapping (µA, µB) → (CA, CB) that max-150

imises the probability of eventual extinction, PE . We call a strategy a choice of what drug151

concentrations CA ∈ [0, c] and CB = c − CA to apply. Drugs for which resistance mutations152
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arise at a lower ratewith lower mutation rates are preferred, however the diminishing marginal153

returns to increasing drug concentrations defined by the Ei(Cj) function mean that it is not154

necessarily optimal to use only the drug with a lower mutation rate.155

3 Results156

3.1 Analytical solution157

To find the probability PD that a newly arisen resistant mutant cell leaves no descendants in the158

distant future, we can use the law of total probability, noting that a mutant is either resistant159

to A or B. Denoting the total probability of a mutation conferring resistance as µ = µA + µB,160

and the probability a strain-i mutant cell leaves no descendants in the distant future as PD|i,161

we getwith the notation that PD|i is the probability a strain-i mutant cell leaves no descendants162

in the distant future:163

PD =
µA

µ
PD|MA

+
µB

µ
PD|MB

. (6)

Due to the stochastic nature of the model, even a mutant lineage with a positive growth164

rate may become extinct, and thus PD|i is not necessarily 0. We can again use the law of total165

probability, noting that the cell must either die before dividing or divide before dying, and that166

the probability of each occurring first is proportional to the rate of that stochastic process. If167

the cell successfully divides once, each of the two daughter cells will also have a PD|i chance of168

leaving no descendants, as they are functionally identical and independent. This gives169

PD|i =
Di

Ri +Di
· 1 + Ri

Ri +Di
· P 2

D|i. (7)

This is a special case of the well-characterised Gambler’s Ruin problem, and the solution170

known since Fermat [49] is that171

PD|i = min

(
Di

Ri
, 1

)
. (8)

Now, let Nm be the number of mutation events that occur before the susceptible population172

becomes extinct. To find P (Nm = k) we can approximate the number of cell divisions (N ) in the173

susceptible population as a deterministic process, as it begins with a very large number of cells so174

the stochasticity of individual cell divisions becomes negligible. Given thatWe can also assume175

that µ ≪ 1 (see e.g. Table 1), we can ignore losses from mutation and thus use the approximation176

dS
dt ≈ S(RS − DS) and therefore S(t) ≈ S0e

(RS−DS)t. Given that under antibiotic treatment177

RS < DS and hence GS < 0, this means the susceptible population undergoes exponential decay.178
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We can then estimate the total number of replications NNr as179

N =

∫ ∞

0
S(t)RS dt

≈ S0

DS
RS

− 1
. (9)

Let the chance of a mutation conferring resistance to either drug occurring at each replication180

event be µ = µA + µB, then noting that replication events are independent Bernoulli trials for181

whether a mutation occurs, we get that Nm ∼ Bin(Nr, µ) and thus that182

P (Nm = k) =
(
Nr

k

)
µk(1− µ)Nr−k. Because the survival of each mutant lineage is independent183

at small mutant population sizes, the overall probability of extinction is then184

PE =
∑∞

k=0 P (Nm = k)P k
D. Substituting Equation into Equation we get The probability that185

each cell starts a successful resistant lineage is the product of the probability of a resistance186

mutation (µ) and the probability that a resistant mutant leaves descendants (1− PD). Noting187

that the outcome of each new cell is independent, we find the overall extinction probability is188

PE = (1− µ(1− PD))
N . (10)

Because µ ≪ 1 is by assumption very small, we can again make the approximation189

PE = exp (N ln(1− µ(1− PD)))

≈ exp (−µN (1− PD)) . (11)

This finding is structurally very similar to the classic result from the evolutionary rescue190

theory literature that PE ≈ exp (−N0 θ) where N0 is the initial population introduced to a novel191

environment, and θ is the rate of rescue for each individual [50]. In our case, N replaces N0192

given the relevant quantity is the number of replications, not the inoculum size, and θ is replaced193

by the probability a mutation occurs and survives, µ(1− PD).194

The simplicity of equation 11 belies the fact that PD and Nr are themselves nontrivial195

expressions. Equation 11 will be used for the computational implementation, as complicated196

expressions are unproblematic for numerical methods. But to make further analytical progress,197

it is useful to simplify the analysis by considering a small class of possible parameters that198

make the formulas collapse down to more manageable forms. In particular, the simplifying199

assumptions are:200

• Resistant cells are unaffected by arbitrarily high drug concentrations (EMA
(CA) = 0,201

EMB
(CB) = 0 for all drug concentrations CA, CB ∈ R+).202

• The shape parameters of the pharmacodynamic functions are unity (βA = βB = 1, equiv-203

alent to Michaelis-Menten kinetics).204

• The drug-free replication rate and death rate of all strains are the same (that is, there is205
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no cost of resistance: ri = r, δi = δ).206

• Both drugs are bacteriostatic (ϕA = ϕB = 1).207

• When only drug A is applied (CA = c, CB = 0), the net growth rate of the susceptible and208

B-resistant strains are both zero (GS = GMB
= 0), and vice versa for when only drug B209

is applied. (Even with both drugs being bacteriostatic, some replication events can occur,210

which is why the net growth rate is not negative.) This implies that r = δ(1 + c) and thus211

that RMA
= δ 1+c

1+CB
≥ δ and likewise for MB. Thus, GS ≤ 0 and GMA

, GMB
≥ 0. If the212

toxicity restriction were relaxed, and both drugs are used with a full dose (CA = CB = c)213

the population would be eradicated without resistance evolution as neither single-resistant214

strain could grow.215

These simplifying assumptions may in reality often be violated, but they are directionally216

plausible. For example, some resistance mutations do confer resistance even to relatively high217

drug concentrations [51], and costs of resistance can be small [52].While restrictive, these218

assumptions are still plausible enough to be interesting, and will be relaxed later in the Simulations219

section. The final assumption is less conceptually important, but makes the computations sim-220

pler. While restrictive, these assumptions are still plausible enough to be interesting, and will221

be relaxed later in the Simulations section. Substituting these assumptions into equation 11222

and computing using Mathematica v13.1.0.0 [53] yields After some algebraic manipulations,223

substituting these assumptions into equation 11 yields224

N =
S0(1 + c)

CACB
, (12)

1− PD =
µACA + µBCB

µ(1 + c)
, (13)

∴ PE = exp

(
−S0

(
µA

CB
+

µB

CA

))
. (14)

These are pleasingly interpretable equations. N is minimised when CA = CB given the225

diminishing marginal efficacy of each drug (Equation 12). Conversely, if only A or B is used, N226

is unbounded, as the susceptible population is not killed. The probability of a resistant mutant227

surviving increases when the drug to which resistance mutations arise more frequently is used228

in a higher dose (Equation 13). Finally, as µA increases relative to µB the infection is more229

likely to be cleared with a higher dose of drug B than drug A, because A-resistant cells are still230

susceptible to drug B (Equation 14).231

Wemaximised PE by computing its derivative with respect to CA, setting this equal to 0, and232

solving for the optimal drug concentrations, denoted ĈA and ĈB. This yields the surprisingly233

simple solution that234

ĈA

ĈB

=

√
µB

µA
, or

log

(
ĈA

ĈB

)
= −1

2
log

(
µA

µB

)
.

(15)
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The second version of this equation is useful as it shows that in log-log space there should be235

a linear relationship between the ratio of the mutation rates and the ratio of the doses. In other236

words, there is a power law relationship between the ratios of mutation rates and the ratio of237

optimal drug doses, with an exponent of −1
2 . This relationship exhibits the expected behaviour238

whereby µA → 0 entails ĈB → 0 and µB → 0 entails ĈA → 0. This means, as mutations become239

more biased towards conferring resistance to one drug, the optimal combination dosing strategy240

relies more on the other, less resistance-prone, drug. However, even with a large difference in241

the mutation rates of the two drugs, the diminishing marginal efficacy of each drug defined by242

the Ei(Cj) function means that a nonzero amount of the more resistance-evolution-prone drug243

should still be used in the drug cocktail.244

In the case of both drugs being bactericidal, the intermediate steps are more complicated so245

are omitted here, but computations in Mathematica v13.1.0.0 [53] show that this same simple246

relationship in Equation 15 between mutation rates and optimal dosing ratios holds.247

3.2 Simulations248

Here, we corroborate the analytical findings computationally and explore regions of parameter249

space that appear inaccessible analytically.250

When both drugs are bactericidal or both are bacteriostatic, the relationship given in Equa-251

tion 15 holds (Figure 1A,D). Interestingly, the actual values of PE differ in the two cases, but the252

optimal dosing strategy remains the same. When both drugs are bacteriostatic, PE is lower,253

as the susceptible population remains large for longer, given there is no drug-induced death254

(only the intrinsic death rate). A qualitatively similar relationship holds when one drug is bac-255

teriostatic and the other is bactericidal, but the optimal dosing strategy is biased towards the256

bacteriostatic drug (Figure 1B,C). This effect, where the coupling of mutations to replications257

favours the growth-inhibiting activity of bacteriostatic drugs, was recently explored in [36].258

Having verified the basic analytical findings, we can begin relaxing various assumptions. As259

resistance becomes weaker (from the earlier unrealistic supposition of total resistance), the two260

resistant strains become less perfectly adapted to their respective drugs, and may even have261

negative growth rates. Further, in practice, bacteria may acquire different mutations confer-262

ring varying degrees of resistance. To incorporate this, we reran the simulations with each run263

having the EC50 values (zi,j) of both mutant strains drawn independently from an exponential264

distribution with mean ζ. This is reflective of the fact that there are many potential mutations265

conferring weak resistance and fewer potential mutations conferring strong resistance available266

in the space of possible mutations [51]. This assumption of a distribution of mutational effects267

This reduces the ‘effective’ mutation rate, as now some A and B-resistant mutants have low268

zMA,A and zMB ,B values respectively (weak resistance). Such mutations will have a negative net269

growth rate, and hence are evolutionary dead ends. For a fixed mutation rate ratio and two bac-270

teriostatic drugs, as resistance becomes weaker (ζ → 1zMA,B, zMB ,A → zW = 1) the probability271

of extinction tends towards 1 and the optimal strategy tends towards using equal amounts of272
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Figure 1: Compulational corroboration of basic analytical results. Each grid square shows the
probability that an initial population of susceptible bacteria will be driven to extinction by
that dosing strategy, averaged over 1000 stochastic simulation runs. The yellow lines show the
theoretically optimal dosing strategy for any given ratio of resistance mutation rates, determined
by numerically evaluating PE for many values of CA and CB = c− CA using Equation 11, and
choosing the minimand and minimum. The green lines are the same in all panels and show the
analytical result from Equation 15 for the basic scenario, for comparison. Parameter values are
µ = 10−9, S0 = 109, r = 1, δ = 1

3 , c = 2, β = 1 and the drug modes of action vary in each panel.
A) ϕA = ϕB = 0. B) ϕA = 1, ϕB = 0. C) ϕB = 1, ϕA = 0. D) ϕA = ϕB = 1.
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both drugs (Figure 2). This is because, given the diminishing marginal efficacy of increased doses273

of each drug, using equal concentrations minimises the net growth rate and therefore reduces N ,274

which is most important when the drugs are less effective. Conversely, for strong resistance as275

ζ → ∞, the optimal ratio of drug concentrations converges to the theoretical value given in Eq.276

15 (which for the example in Figure 2 computes to log2(
ĈA

ĈB
) = − log2(

1
8) =

3
2). Figure S1 shows277

that with ζ = 5 the results are very similar to those seen in Figure 1. This suggests that our278

analytical results are still reasonable despite assuming resistance is complete.The fuller results279

shown in Figure S1 are very similar to those in Figure 1, suggesting the simplifying assumption280

made in our analytical results that resistance is complete is unproblematic.281
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Figure 2: Optimal dosing with partial resistance. Parameters are the same as in Figure 1D
except that µB = 8µA and zMA,B, zMB ,A ∼ 1 + Exp( 1

ζ−1) for ζ > 1 and zMA,B, zMB ,A = 1 for
ζ = 1. For each dot defining a ζ value, 1000 values of z were drawn, evenly spaced from the cdf
at the 0.1th, 0.2th, ..., 99.9th percentiles, and the mean probability of extinction was computed
over these 1000 using the approximation in Equation 11. This was done for 30 possible ratios of
drug doses, and the dosing ratio which yielded the highest PE value was plotted on the y-axis.

Changing the shape parameter (β) noticeably changes the basic result. If β > 1 then the282

pharmacodynamic function has a sigmoidal shape and thus is steeper around the z-value where283

the drug has half its maximal effect. This means that intermediate values of both drugs are284

less beneficial than a more potent dose of just one drug, especially when both drugs are bac-285

teriostatic. Beyond some threshold β value, using just one drug is optimal (Figure 3). At286

this threshold value the intermediate drug concentration ratio switches from being the global287

maximum of extinction probability to only a local maximum, so an underlying smooth function288

leads to a discontinuous result upon taking the maximand. If instead β < 1 then the pharma-289

codynamic function is steep initially near a drug concentration of zero, and then approaches290

the maximum inhibitory effect slowly. Thus, it is most valuable to use some of both drugs.291

And again, below some threshold, using equal quantities of both drugs is optimal. Results for292

different mutation rate ratios and drug types are shown in Figures S2 and S3 for β = 3 and293

β = 0.2 respectively.294
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Figure 3: Optimal dosing under shape parameter variation. Parameters are the same as in

Figure 1D except that δ = 1.1−
(
1 + c−β

)−1
which ensures that regardless of the value of β the

susceptible population’s growth rate is always at least slightly negative. The maximum ratio
tried was 24 = 16, so the fact that dots clump there does not suggest that value is special,
instead that arbitrarily large ratios are optimal, but cannot readily be plotted on a finite y-axis.

Thus far cost-free resistance has been assumed, whereas in reality mutations that confer295

resistance often reduce the maximum replication rate or cause other fitness costs. While some296

drugs give rise to resistant mutants with unchanged or even increased fitness in the absence of297

the drug, a meta-analysis suggests that common values of fitness costs are on the order of 10%298

[52]. For the basic model, in the limit as CB → 0, δ was chosen such that GMB
→ 0, whereas299

once resistance costs are introduced the net growth rate of mutants can become negative. There300

is a probability of 0 that a mutant with a negative growth rate survives in the long term, and301

so all negative growth rates are equally good from the perspective of minimising resistance302

evolution. Thus, here too intermediate dosing strategies are sufficient to ensure PE ≈ 1 even303

for very skewed mutation rates (Figure S4).304

The toxicity-enforced limit of the total drug concentration has so far been fixed at c = 2,305

but this limit is not biologically or theoretically special. We also considered a scenario where306

the drugs are somewhat less toxic, and a larger maximum dose of CA + CB = c = 5 can be307

applied. Maintaining the assumption from before that GS ≤ 0 and GMA
, GMB

≥ 0 we get that308

δ = r
1+c = 1

6 is halved from its earlier value of δ = 1
3 . This ensures we still explore an interesting309

region of parameter space where mutants have a decent chance of arising and surviving. In this310

case, we observe that the same basic trend holds, while the probability of extinction is higher311

throughout the figure (Figure S5). The higher overall drug concentrations mean that the optimal312

strategy skews slightly more heavily towards the bacteriostatic drug (the yellow line is further313

away from the green line in Figure S5 than in Figure 1) as in absolute terms this still leaves314

more of the bactericidal drug to clear the infection.315
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We also extended our basic model to include pharmacokinetics, and found that introducing316

a drug decay rate of 0.15 h−1 left the basic results roughly unchanged (Figure S6). This suggests317

that ignoring pharmacokinetics (as in the analytical solution) is not a fatal flaw.318

Finally, we introduced resource constraints into our basic analytical model [36]. Each319

replication event uses one arbitrary unit of resource, and the simulation begins with 109 units320

of resource, with a constant influx of 108 h−1. The maximum growth rate is now given by the321

Monod equation, with a resource affinity constant of 108. Again, the basic relationship between322

mutation rate and optimal dosing concentrations persists (Figure S7). Now that growth is323

resource-limited, the susceptible population declines more rapidly, and there are fewer total324

replications N , so across all panels and mutation rates the probability of extinction is higher.325

4 Discussion326

Antimicrobial combination therapy is justified partly on the basis that it reduces the probability327

of infectious pathogens evolving resistance [1, 2]. To date, however, the design of optimal328

dosing regimens in combination therapy has given little consideration to drug-specific variation329

in pathogen resistance mutation rates. Here we have shown that as two drugs have increasingly330

different mutation rates, the optimal dosing strategy entails using an increasingly large fraction331

of the drug with a lower resistance mutation rate, according to a simple power law relationship.332

This is an intuitive result, as drugs that have a higher resistance mutation rate are less beneficial333

to use. This result is relatively robust to changing the drugs’ modes of action. Across various334

alterations to the basic scenario — such as changes to the shape parameter β, making resistance335

costly or incomplete, increasing the death rate, or adding pharmacokinetics — the relationship336

between a skewed mutation rate and skewed optimal dosing strategy persists, but in several337

cases the dosing skew should never be raised above some maximum value.338

Antibiotic resistance is particularly concerning in tuberculosis, where as of 2022 12% of339

all cases worldwide involved multidrug-resistant (MDR) strains of M. tuberculosis [54]. A key340

component of an MDR containment strategy is to minimise the incidence of already resistant341

strains acquiring resistance to another drug which was previously efficacious. Clinical data342

from Georgia indicates that for MDR patients being treated with second-line antibiotics, 9%343

acquire resistance to ofloxacin during treatment, and 10% to kanamycin [55]. To our knowledge,344

there is no empirical data linking the probability of tuberculosis patients acquiring resistance345

to a particular drug with the rate at which resistance mutations to that drug arise in the346

laboratory, however there is a strong prima facie reason to expect such a connection. Mutation347

rate differences among strains of M. tuberculosis have been investigated, and indeed a strain348

with more frequent mutations in the laboratory had elevated levels of MDR in clinical infections349

[56].350

Our choices of functional forms for the drug-dependent mortality and replication rates351

in Equations 2 and 3 were crucial for the results that followed. These are not the only352
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reasonable choices, so bear some explanation and justification. Aside from our assumption353

of Bliss independence drug interaction, the other main model of null drug interactions is Loewe354

additivity (introduced in [57]). Loewe additivity assumes that the two drugs operate by the355

same mechanism of action, and therefore that the combined effect of both drugs is equivalent356

to the effect of either drug at their combined concentrations [19]. In this case, the mode of357

action and shape parameters of the two drugs must be equal, as by assumption the two drugs358

work interchangeably (βA = βB = β, ϕA = ϕB = ϕ). Thus, under Loewe additivity we would359

have that360

Ei(CA, CB) =

(
1 +

(
CA

zi,A
+

CB

zi,B

)−β
)−1

, (1′)

Ri = ri(1− ϕEi(CA, CB)), (2′)

Di = δi + (1− ϕ)Ei(CA, CB). (3′)

For the susceptible strain, recall that zS,A = zS,B = 1, and noting that CA + CB = c, we see361

that Ei(CA, CB) =
(
1 + (CA + CB)

−β
)−1

=
(
1 + c−β

)−1
. That is, the effective drug concentration362

is only a function of the total drug concentration c, but not dependent on the individual drug363

concentrations C(A) and C(B). Therefore, the total number of replications N will also be a364

function of c. As a result, unlike with Bliss independence, skewed drug dosing ratios do not365

clear the infection slower. Thus, in the Loewe additivity model, there is no tradeoff between366

clearing an infection faster and more mutants arising, and it is always best to use only the drug367

that has a lower resistance mutation rate.368

In our analysis and simulations, apart from the dosing concentration and resistance mutation369

rate, the two drugs had identical properties. This need not be the case. If drug A has a higher370

rate at which mutations conferring resistance to it arise, but it is also more potent per unit of371

toxicity, it may still be preferable to use a larger dose of it than drug B. Moreover, the toxicity372

model used here is unrealistic: in reality, there is no sharp cutoff beyond which further increases373

in drug doses have catastrophic consequences and before which toxicity is zero. Instead, negative374

side effects are likely to be a smooth monotonically increasing function of drug concentration375

[58], and it could be that the two drugs have additive, antagonistic, or synergistic combined376

effects on total toxicity. Allowing for this greater subtlety in drug toxicity would be a valuable377

avenue for further research, but could complicate the mathematical analysis considerably.378

One of the key weaknesses of the analytical solution presented here is that it relies on379

constant replication and death rates over time for all strains, whereas in reality drugs decay over380

time in the patient’s body. It appears that this simplification does not change the core result,381

however, given the introduction of pharmacokinetics in Figure S6 left the main trend unchanged.382

Our analytical results relied on assuming mutations conferring complete resistance, that is an383

infinitely wide mutant selection window, where for arbitrarily large drug concentrations the384

mutant still achieves a positive growth rate. This is clearly unrealistic. Our simulation results385

in Figures 2 and S1 show that relaxing this assumption to allow for a realistic mutant selection386
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window weakens but does not drastically change the result. The simulations could be extended387

in many ways, such as including resource-constrained growth, and multiple species of commensal388

or pathogen bacteria.389

In our simulations resource limitations led to reduced incidence of resistance mutants arising390

and surviving. An important effect we did not include in our analytical model, and could not391

detect in the simulations, is ’competitive release’ where a strain or species that is initially limited392

in its population size due to competition with a fit cohabitant, can begin to grow rapidly if393

the competitor is eliminated [21, 59, 60]. In particular, if the susceptible bacterial population394

reaches a high level, then resistant mutants may struggle to grow, but once antibiotics crash395

the susceptible population, there is more ecological room for the resistant strains to grow. We396

did not observe this effect, likely because there were no pre-existing mutants in our simulations,397

and so even if the susceptible population crashes, there may be no resistant strain ready to fill398

the newly vacated niche. Thus, exploring situations with some pre-existing mutants [18] could399

be a valuable extension to our study.400

Antimicrobial resistance is often conferred not by de novo mutations but through horizontal401

gene transfer (HGT), e.g. through the transfer of plasmids (conjugation), or the uptake of free402

DNA from the environment (transformation) [61, 62]. Whilst our model does not incorporate403

HGT of resistance genes, we believe that in some situations our results may still be applicable,404

at least approximately. For example, consider a scenario in which a drug-susceptible pathogen405

co-occurs but is not in competition with resistant commensal bacteria, and that the resistance406

genes can be transferred to the pathogen. In this situation, one would expect per capita rates of407

HGT to be roughly constant over time. (Under the commonly used mass-action assumption, the408

rate of HGT can be expressed as βSI, where S is the recipient and I the donor population size.)409

Therefore, within our model framework, the process of HGT would be equivalent to the process410

of mutation (with βI corresponding to the mutation rate µ), and our results would extend to411

mutations acquired through HGT or a combination of both mutation and HGT. Depending412

on the bacteria and mechanism of HGT, rates of HGT are potentially orders of magnitude413

greater than mutation rates. Thus, using a drug to which the commensal bacteria is susceptible414

could make resistance considerably less likely to evolve. More complex scenarios where the415

donor populations are also affected by the drug or interact with the pathogen population (e.g.,416

through competition or cross-feeding) would require a new model incorporating these effects.417

While these results will take time to become clinically applicable, the potential of using418

the (often well-characterised) resistance mutation rate in deciding on a treatment strategy is419

unreasonably underexplored. Even if theoretical models as abstract and (compared to reality)420

simple as this one cannot be directly applied in clinical settings, our results could motivate421

experimental efforts to corroborate them, which could in turn lead to in vivo tests. Our findings422

should in principle be straightforward to test in the laboratory. This would require assembling a423

set of drugs with considerably different mutation rates in some model bacteria, and challenging424

parallel susceptible populations with different pairs of these drugs in a variety of concentration425

ratios. Integrating knowledge of resistance mutation rates into pharmacological decision-making426
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has the potential to clear more infections and minimise resistance evolution.427
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30. Krašovec R, Belavkin RV, Aston JAD, Channon A, Aston E, Rash BM, Kadirvel M,537

Forbes S, and Knight CG. 2014 Mutation rate plasticity in rifampicin resistance depends538

on Escherichia coli cell–cell interactions. Nature Communications. 5 :3742. (doi:10.1038/539

ncomms4742)540

31. Spagnolo F, Rinaldi C, Sajorda DR, and Dykhuizen DE. 2016 Evolution of Resistance to541

Continuously Increasing Streptomycin Concentrations in Populations of Escherichia coli.542

Antimicrobial Agents and Chemotherapy. 60 :1336–42. (doi:10.1128/aac.01359-15)543

32. Huseby DL, Pietsch F, Brandis G, Garoff L, Tegehall A, and Hughes D. 2017 Mutation544

Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia545

coli. Molecular Biology and Evolution. 34 :1029–39. (doi:10.1093/molbev/msx052)546

33. Meibohm B and Derendorf H. 1997 Basic concepts of pharmacokinetic/pharmacodynamic547

(PK/PD) modelling. International Journal of Clinical Pharmacology and Therapeutics. 35548

:401–13549

34. Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, and Levin BR. 2004 Pharma-550

codynamic Functions: a Multiparameter Approach to the Design of Antibiotic Treatment551

Regimens. Antimicrobial Agents and Chemotherapy. 48 :3670–6. (doi:10.1128/AAC.48.552

10.3670-3676.2004)553

35. Neubig RR, Spedding M, Kenakin T, and Christopoulos A. 2003 International Union of554

Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII.555

Update on Terms and Symbols in Quantitative Pharmacology. Pharmacological Reviews.556

55 :597–606. (doi:10.1124/pr.55.4.4)557
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Figure S1: Optimal dosing with mutations conferring incomplete resistance. The parameters
are identical to Figure 1 except zMA,B, zMB ,A ∼ 1 +Exp(0.25), sampled independently for each
run of the simulation.
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Figure S2: Optimal dosing with a larger shape parameter sometimes entails using solely one
drug. The parameters are identical to Figure 1 except βA = βB = 3 and δ = 0.19.
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Figure S3: Optimal dosing with a smaller shape parameter always includes non-zero amounts
of both drugs. The parameters are identical to Figure 1 except βA = βB = 0.2, δ = 0.47.
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Figure S4: Optimal dosing with costs of resistance always includes non-zero amounts of both
drugs. The parameters are identical to Figure 1 except rMA

= rMB
= rS − 0.1 = 0.9.
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Figure S5: Optimal dosing with higher drug concentrations. The parameters are identical to
Figure 1 except c = 5, δ = 1

6 .
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Figure S6: Optimal dosing with pharmacokinetics. The parameters are identical to Figure 1
except a drug decay rate of 0.15 has been introduced with doses every 12 hours of both drugs,
meaning that e−0.15×12 = 17% of the previous dose remains at the next dose. To compensate
for the drug decaying, the intrinsic death rate has been increased by 0.2 to δ = 0.53. The
yellow theory lines are not shown here, as the theoretical analysis only dealt with constant drug
concentrations. The original green lines are still shown for comparison.
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Figure S7: Optimal dosing with resource constraints. The parameters are identical to Figure
1 except growth is now modelled as being limited by a single rate-limiting resource, with an
initial concentration of 109 units, where one unit is consumed per bacterial replication, and
a constant influx of 108 h−1. The yellow theory lines are not shown here, as the theoretical
analysis only dealt with constant drug concentrations. The original green lines are still shown
for comparison.
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