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Abstract
Motivation: Long-read assemblers face challenges in discerning closely related viral or
bacterial strains, often collapsing similar strains in a single sequence. This limitation has
been hamperingmetagenome analysis, where diverse strainsmay harbor crucial functional
distinctions.
Results: We introduce a novel software, HairSplitter, designed to retrieve strains from
a strain-oblivious assembly and long reads. The method uses a custom variant calling
process to operate with erroneous long reads and introduces a new read binning algorithm
to recover an a priori unknown number of strains. On noisy long reads, HairSplitter can
recover more strains while being faster than state-of-the-art tools, both in the viral and the
bacterial case.
Availability: HairSplitter is freely available on GitHub at
github.com/RolandFaure/HairSplitter.
Contact: roland.faure@irisa.fr
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Introduction1

Microbiomes play a crucial roles in many ecosystems, such as soils or human guts, in turn impacting hu-2

man health (Conlon and Bird, 2014) and soil fertility (Coban et al., 2022). Microbiomes typically contain sets3

of organisms with highly similar genomes, the sequences of which are called haplotypes (short for “haploid4

genotypes” (Ceppellini et al., 1967)). Distinguishing these lineages is an important challenge, as small genomic5

differences between haplotypes can lead to significant phenotypic changes. For instance, some strains of6

Escherichia coli can be pathogenic or commensal while having an Average Nucleotide Identity (ANI) (Konstan-7

tinidis and Tiedje, 2005) of more than 98.5% (Frank et al., 2011). A few mutations also became famous for8

altering significantly the infectiousness of some coronaviruses lineages (Magazine et al., 2022).9

10

De novo sequencing and assembling is a central method to characterize microbial communities. Unlike pre-11

viousmethods, it allows to analyse the composition of ametagenomewithout culturing the strains, enabling a12

wide range of analyses (Ward, 2006). While existing genome assemblers proficiently reconstruct genomes of13

abundant species, they struggle to distinguish viral or bacterial haplotypes. Themain difficulty for assemblers14

lies in the unknown number of haplotypes in a sample and their uneven coverage (Ghurye et al., 2016).15

16

Many tools have been developed to overcome this problem in the context of short-read assemblies, such17

as OPERA-MS (Bertrand et al., 2019), Constrains (C Luo et al., 2015), STRONG (Quince et al., 2020), StrainXpress18

(Kang et al., 2022) and VStrains (R Luo and Lin, 2023). However, these methods are not designed for long-read19

sequencing and do not exploit the long-range information contained in long reads.20

21

Long reads with extremely low error rate, such as PacBio HiFi reads, have been used to distinguish finely22

strains with the help of specialized software such as hifiasm (Cheng et al., 2021) and stRainy (Kazantseva et23

al., 2023). However, this challenge has not been yet successfully tackled in the case of noisier reads such as24

“regular” PacBio data or Oxford Nanopore Technology (ONT) reads, the latter of which can be obtained very25

rapidly on cheap sequencers that are small enough to be carried into the field (Cesare et al., 2024; Runtuwene26

et al., 2019).27

28

Several methods have been implemented to deal with haplotype separation for long reads with high er-29

ror rates. While the viral and bacterial haplotype assembly problems are identical in their formulation, the30

characteristics of the input data vary significantly: the genomes are generally much shorter and much more31

deeply sequenced in the viral case. This has led to the emergence of software specialized in either of the32

two problems. In the context of bacterial strain separation, Vicedomini et al., 2021 showed that mainstream33

assemblers such asmetaFlye (Kolmogorov et al., 2020) and Canu (Koren et al., 2017) failed to distinguish close34

bacterial haplotypes and proposed a new tool, called Strainberry, to reconstruct strains. In the context of35

viral strain separation, Strainline (X Luo et al., 2022) and HaploDMF (Cai et al., 2022) were presented to tackle36

specifically the viral haplotype reconstruction problem and need very high depth of sequencing to work. The37

method iGDA (Z Feng et al., 2021) was proposed as a general approach to phaseminor variants while handling38

high error rates and can theoretically assemble both bacterial and viral haplotypes. The main shortcomings39

of all of these methods is that they struggle to recover haplotypes of low abundance. Additionally, most of40

these tools are very computationally intensive.41

42

We present HairSplitter, an efficient pipeline for separating haplotypes in the viral and bacterial context43

using potentially error-prone long reads. HairSplitter first calls variants using a custom process to distinguish44

actual variants from alignment or sequencing artefacts, clusters the reads into an unspecified number of hap-45

lotypes, creates the new separated contigs and finally untangles the assembly graph. HairSplitter can be used46

for either metaviromes or bacterial metagenomes.47



48

Methods49

Overview of the pipeline50

HairSplitter takes as input an assembly (in fasta format) or an assembly graph (in gfa format) as well as se-51

quencing reads (fasta/q) and produces a new assembly (fasta and gfa). The HairSplitter pipeline is depicted on52

Figure 1 and comprises five steps: 1) correcting the assembly, 2) calling variants on each contig, 3) separating53

the reads by haplotype on each contig, 4) reassembling the strain-specific contigs and 5) unzipping.54

Completion of the assembly graph55

To work well, HairSplitter needs as input an assembly graph on which all non-chimeric reads align from end56

to end, which we define as a “complete” assembly graph. If the assembly was not provided as a graph, it is57

turned into an incomplete graphwith no edges. Collapsed assembly graphs are also often incomplete because58

of contigs that have been detached from their neighbors and of collapsed structural variation between strains.59

Aligning reads on an incomplete graph translates as locations where a significant number of reads stop60

aligning, which we call breakpoints. Breakpoints can occur in the middle or the end of contigs. To complete61

the initial assembly graph, the reads are aligned on the graph usingminigraph (Li et al., 2020). The assembly is62

subsequently examined for breakpoints and HairSplitter breaks the contigs at these breakpoints. Additionally,63

links are added in the graph between ends of contigs when there is sufficient read support. The process is64

illustrated in Figure 1a. An evaluation of this step in terms of misassemblies and contiguity is provided in65

Supplementary Table 5.66

The completed assembly resulting from this process is used throughout the subsequent stages of the67

pipeline.68

Mathematical model behind variant calling69

To sort reads into haplotypes, the intuitive method of clustering reads based on the similarity of their full70

sequence proves ineffective due to the dominance of sequencing and alignment errors, obscuring strain differ-71

ences. HairSplitter first identifies variants positions, pinpointing loci where strains exhibit actual differences.72

The reads are then separated based only on these loci. We did not find any variant caller suitable for our73

specific challenge - calling variants with noisy long reads in a metagenomic context including potentially low-74

abundance strains while maintaining high computational efficiency. Thus, we devised our own variant calling75

procedure.76

77

The naivest procedure to identify polymorphic loci consists in going through the pileup of the reads on the78

assembly and identifying loci where at least a proportion p of reads have an alternative allele. However, this79

approach falls short when using error-prone reads. For instance, in the case of a strain representing only 1%80

of the total of the reads, p needs to be less than 0.01 to detect variant positions corresponding to this strain,81

resulting in the selection of many artefactual positions if the reads have an error rate > 1%.82

83

The key lies in taking several loci into account simultaneously, an idea already explored in (Z Feng et al.,84

2021) and leveraging the assumption that alignment artifacts occur randomly in the pileup while genomic85

variant are expected to be correlated along the alignment. Consequently, pileups at polymorphic loci are ex-86

pected to exhibit strong correlation, contrary to pileups at non-polymorphic loci. HairSplitter introduces a new87

statistical approach and a new algorithm to exploit this observation and detect even rare strains, as illustrated88



a. assembly graph 
completion

b. variant calling

c. read binning
d. reassembly

e. unzipping

Figure 1. Illustration of the five steps of the HairSplitter pipeline. Colored rectangles represent contigs, thick
blue lines are links in the assembly graph and black lines represent the reads aligned on the assembly. Orange
shapes on reads and contigs indicate variant positions compared to the original sequence.



Figure 2. In this pileup of reads, does the submatrix of variants highlighted in red vouch for the presence of
two strains? The probability that there exist 3 reads having alternative allele at 3 loci if we estimate e = 0.1 is
less than 0.02: the variants are thus likely not independent and probably underline the presence of at least
two different strains.

below.89

90

Consider a complete pileup of n reads overm positions, which we will model as a matrix of letters. Let us91

assume that errors occur independently on all reads and at all positions with a probability ≤ ϵ and that all92

errors on a given column are identical (worst-case scenario). We aim to estimate the probability that there93

exist a reads that share errors at b different loci. In other words, the probability that there exist a submatrix94

of size a ∗ b containing only errors in the pileup, defined by selecting a rows (reads) and b columns (loci).95

There exist
(
n
a

)(
m
b

)
submatrices of size a ∗ b. Each of these submatrix has probability lower than ϵab to con-96

tain only errors. Therefore, given that the expectation is linear (DeGroot and Schervish, 2002), the expectation97

E of the number of submatrices of size a ∗ b containing only errors in the pileup is lower than
(
n
a

)(
m
b

)
∗ ϵab.98

Now, to obtain the probability that there exist no submatrix of size a ∗ b containing only errors, we can use99

Markov’s inequality, according to which the probability that a positive random variable be higher than 1 is100

always smaller than the expectation of this variable (DeGroot and Schervish, 2002). Here, it tells us that the101

probability that there exist a submatrix containing only errors is smaller thanE. In other terms, the probability102

that there exist somewhere in the pileup a reads sharing errors at b different loci is lower than
(
n
a

)(
m
b

)
∗ ϵab.103

Now, let us consider a pileup with n = 1000 reads acrossm = 5000 positions and ϵ = 0.1. The probability104

that there exist a = 10 reads sharing errors at b = 10 different loci is lower than
(
n
a

)(
m
b

)
∗ ϵab = 9.10−44.105

Therefore, if the error rate is of 10% or less and the pileup indicates 10 reads (1% coverage) sharing an alter-106

native allele at 10 loci (divergence of 0.2%), we can confidently assume that these are not errors, suggesting107

these reads originate from the same strain, and the loci are polymorphic sites.108

109

Despite its simplified nature, this model underscores the statistical power gained by examining multiple110

loci simultaneously, enabling the detection of low-abundance, highly similar strains even in the presence of111

very noisy long reads. The idea behind the model is illustrated in Figure 2.112

113

Variant calling114

The approach to identifying polymorphic loci capitalizes on the statistical power underlined above. Specifi-115

cally, HairSplitter aims to identify clusters of positions featuring alternative alleles on the same reads.116

117

To generate the pileup, all reads are aligned to the contigs of the assembly using minimap2 (Li, 2018). Hair-118

Splitter then traverses the pileup of each contig and determines, for each position, the majority allele and the119

main alternative allele (either a base or an indel). Only positions with a minimum of five reads carrying alter-120

native alleles are considered potential polymorphic sites to ensure statistical robustness (cf. model above).121

HairSplitter compares each new position to previously observed positions. If the set of reads with alternative122

alleles at this position and at a previously encountered position share more than 90% reads, the new position123

is clustered with the old one.124



125

After all positions have been considered, clusters are tested using the statistical model described above126

and only clusters with a p-value below 0.001 are kept. The corresponding positions are outputted as polymor-127

phic sites.128

129

Read binning130

The contig is divided into windows with a default size of w (2000 bases by default). Reads are binned by131

haplotypes sequentially on the windows of a contig. Only reads spanning the entirety of the window are con-132

sidered for binning. To cluster reads, HairSplitter operates on the premise that reads originating from the133

same haplotype should be identical at all polymorphic loci. Nevertheless, inherent sequencing and variant-134

calling errors might introduce unintended discrepancies among reads from a single haplotype. To address135

this, HairSplitter adopts a three-step strategy.136

137

Step one is to correct errors at polymorphic loci. HairSplitter corrects the errors at polymorphic loci by138

performing a k-nearest-neighbour imputation (Fix and Hodges, 1989), with k = 5. The distance between two139

reads is defined as the number of different alleles at polymorphic positions. Each base of the pileup is consid-140

ered and changed to the most frequent base among the k nearest neighbours on all reads and all positions141

until convergence.142

143

Step two is to form clusters of reads, clustering reads together if and only if they exhibit no differences at144

any polymorphic loci.145

146

In the third step, a last check is run to rescue small clusters that can arise from errors in Step 1. HairSplitter147

constructs a graph linking each read to its k closest neighbours, including links between all pairs of reads148

differing on one position or less. The graph is then clustered using the Chinese Whispers algorithm (Biemann,149

2006), initialising the clustering with the clusters obtained in the second step. The ChineseWhispers algorithm150

iteratively assign reads to the most represented cluster among their neighbors until convergence. The Chi-151

nese Whispers algorithm always converge toward a stable solution, i.e. a clustering where all reads are in the152

same group as at least half of their neighbors. There exist many stable clusterings but the algorithm is likely153

to converge to a solution close to the initialization: the clusters obtained in the second step are unlikely to be154

significantly altered, but very small clusters will likely be merged with other close cluster.155

156

Reassembly157

Across all windows on every contig, the original sequence undergoes repolishing using the haplotype-158

specific groups of reads previously identified. The polishing can be executed with either Racon (Vaser et al.,159

2017) or Medaka (Medaka 2018), with the latter being more precise but considerably slower in our experience.160

By default, HairSplitter uses Medaka exclusively for short genomes (≤ 1 Mb).161

Graph Unzipping162

The resulting assembly comprises contigs of length w that can easily be stitched into longer contigs. For163

this purpose, a straightforward algorithm is employed, GraphUnzip (Faure et al., 2021), depicted in Figure 1e.164

Let us call a contig exhibiting multiple outgoing links with other contigs at one end a “knot”. Knots generally165

represent collapsed contigs. GraphUnzip initially aligns all reads on the assembly graph. Subsequently, Gra-166

phUnzip iteratively assess nodes. If more than three reads traverse a neighbor of the knot (called A), then167



dataset species # strains strain coverages ANI divergence sequencing technology

HBV-2 hepatitis B 2 4000x, 9900x 10% Nanopore R.9.4.1
Norovirus-7 Norovirus 7 50, 350, 450, 700, 900, 1150, 1400x 1-3.9 % Nanopore R.9.4.1
V. fluvialis Vagococcus fluvialis 5 90x, 136x, 172x, 182x, 206x 0.01-1.51% Nanopore R9.4.1

Zymo-GMS Q9 Escherichia coli 5 90x, 90x, 90x, 90x, 90x 0.37-1.51% Nanopore R9.4.1
Zymo-GMS Q20 Escherichia coli 5 25x, 25x, 25x, 25x, 25x 0.37-1.51% Nanopore R10.4.1
Zymo-GMS HiFi Escherichia coli 5 41x, 41x, 41x, 41x, 41x 0.37-1.51% PacBio HiFi

Table 1. Characteristics of the different datasets used for benchmarking on real data.

traverse the knot, and traverse another neighbor at the opposite end of the knot (called B), the knot is du-168

plicated to create a new contig which will have as unique neighbors A and B. The links from A and B to the169

original knot are deleted, preserving only the links to the copy of the contig. This process is repeated until no170

further knots can be duplicated.171

Results172

Datasets173

The datasets used in this article are described in Table 1. The accession numbers of the data on public174

repositories can be found in section* “Reproducibility and data availablility".175

Bacterial datasets176

We used the Zymobiotics Gut Microbiome Standard (abbreviated to Zymo-GMS) and a Vagococcus fluvialis177

dataset (Rodriguez Jimenez et al., 2022) to compare the performance of different algorithms designed to sepa-178

rate bacterial haplotypes in ametagenomic context. Zymo-GMS is amixture of bacteria, archaea and yeast, 21179

different strains in total, dosed to mimic the composition of the human gut microbiome. These 21 strains in-180

clude five Escherichia coli strains, which we used to evaluate the strain-separation ability of various programs.181

Three Zymo-GMS sequencing were used, respectively from a Nanopore R9.4.1 run, a Nanopore 10.4.1 run182

and a PacBio HiFi run. The Vagococcus fluvialis dataset consists of a mix of five Vagococcus fluvialis strains that183

were sequenced together using barcoded reads, each barcode corresponding to a strain. We did not use the184

barcode information for the assemblies, reserving them for validation. Among the five strains, three had an185

ANI over 99.99%. metaFlye is used to assemble the reads, as it yielded better assemblies compared to Canu186

according to Vicedomini et al. (Vicedomini et al., 2021).187

In addition, we simulated datasets to assess the impact of the number of strains, coverage and divergence188

on the assemblies. These experiments were directly inspired by the protocol of Vicedomini et al. (Vicedomini189

et al., 2021). The genomes of ten strains of Escherichia coli were downloaded from the SRA, namely 12009190

(GCA_000010745.1), IAI1 (GCA_000026265.1), F11 (GCA_018734065.1), S88 (GCA_000026285.2), Sakai (GCA_191

003028755.1), SE15 (GCA_000010485.1), Shigella flexneri (GCF_000006925.2), UMN026 (GCA_000026325.2), HS192

(GCA_ 000017765.1), and K12 (GCF_009832885.1). These strains were chosen to be representative of the diver-193

sity of E. coli.WesimulatedNanopore sequencing usingBadread (RWick, 2019)with the setting “Nanopore2023"194

to simulate 50x of R10.4.1 reads. Between 2 and 10 strains were mixed to assess how many strains the soft-195

ware could separate. From the 10-strain mix, the 12009 strain was downsampled to 30x, 20x, 10x and 5x196

to assess the impact of the coverage on strain separation. Finally, to assess the impact of the divergence197

of sequences on strain separation, 50x of reads were simulated for strain K12 and for strains of decreasing198

divergence with K12; assemblies of K12 with each of these strain was evaluated for separation.199

Viral datasets200

Two datasets were used to benchmark the performance of the programs tested at separating viral haplo-201

types, a 2-strain hepatitis B Virus (HBV) mix from (McNaughton et al., 2019) and an in-silicomix of the sequenc-202



Figure 3. 27-mer completeness, MetaQUAST completeness and run-time of different software on the Vago-
coccus and the three Zymo-GMS dataset. The run-times are the run-times of the full assembly pipeline (as-
sembly+strain separation) and are represented in log scale.

ing of seven strains of Norovirus from Cai et al. (Flint et al., 2021). These datasets were directly taken from203

the paper of HaploDMF (Cai et al., 2022). The reference genomes to run reference-based tools were taken as204

the reference genome in the GenBank database, GCF_000861825.2 for HBV and MW661279.1 for Norovirus.205

Performance evaluation206

We used MetaQUAST (Mikheenko et al., 2015) to measure assembly features such as assembly length,207

NG50, misassemblies, mismatches, indels and completeness. MetaQUAST was run with the –unique-mapping208

and –reuse-combined-alignments options to prevent a sequence, whether a contig or part of it, from being209

mapped to multiple distinct reference locations.210

To assess if strains are well represented, the most important metric is the completeness of the resulting211

assembly. We chose to assess MetaQUAST completeness but also 27-mer completeness. MetaQUAST com-212

pleteness measures the percentage of the solution on which the assembly aligns, while 27-mer completeness213

measures the percentage of the 27-mers of the solution that are effectively found in the assembly. Collapsed214

homozygous contigs typically impact negatively MetaQUAST completeness but not 27-mer completeness.215

Evaluated software216

In addition of HairSplitter, we chose to evaluate the software stRainy (Kazantseva et al., 2023) and Strain-217

berry (Vicedomini et al., 2021), which have been introduced specifically as bacterial strain separationmethods,218

hifiasm-meta (X Feng et al., 2022), which is the most popular assembler for direct HiFi assembly, Strainline (X219

Luo et al., 2022) and HaploDMF (Cai et al., 2022), which have been introduced as viral strain separation meth-220

ods and finally iGDA (Z Feng et al., 2021), which can perform both.221

We have tried using all these software on all datasets. Strainline and HaploDMF failed to run in reasonable222

time on non-viral datasets and were automatically killed after 15 days of processing. Strainline failed to per-223

form strain separation on the HBV-2 dataset within its allowed RAM limit of 50G, probably because of the high224

coverage. We tried downsampling the dataset but the problem remained.225

The reference-based virus phasing tools were run with the same reference genome as in (Cai et al., 2022),226

MT622522.1 for hepatitis B and MW661279.1 for Norovirus.227

Benchmarking evaluation228

Bacterial haplotypes229

The benchmark results on the Zymo-GMS and V. fluvialis datasets are illustrated in Figure 3 and detailed230

in Supplementary Table 2. HairSplitter performed better separation of the conspecific strains compared to231

the original metaFlye assemblies, delivering more comprehensive and accurate assemblies than Strainberry232



Figure 4. MetaQUAST completeness of assemblies of simulated metagenomes of E. coli. On the left, mix of 2
to 10 strains sequenced with 50x coverage were assembled. In the middle, strain 12009 was downsampled in
the 10-strains metagenome and completeness of the 12009 strain is measured. On the right, reads of strains
of decreasing divergence were mixed with K-12 reads and assembled.

and iGDA. Particularly with Nanopore data, HairSplitter produced the most complete assemblies, though less233

contiguous than those produced by Strainbery.234

On HiFi reads, the stRainy, hifiasm and HairSplitter assemblies depicted a high k-mer completeness. How-235

ever, they showed either a high duplication ratio (for stRainy and hifiasm) or low metaQuast completeness236

(for HairSplitter) because none managed to duplicate repeated genomic regions to their correct multiplici-237

ties. This effect is also observed in several Nanopore assemblies, where 27-mer completeness remains high238

while MetaQUAST completeness is notably lower. Typically, the three almost identical V. fluvialis strains were239

assembled as one.240

The completeness of assemblies in the simulated benchmark is presented in Figure 4, with a detailed evalu-241

ation in Supplementary Table 3. The evaluation of iGDA is not depicted because iGDA inexplicably decreased242

the completeness of the original metaFlye assemblies. Simulations indicated that HairSplitter significantly243

outperformed Strainberry, particularly in scenarios involving a high number of strains in the metagenome244

or highly similar strains. The relatively high completeness of the 8-strains Strainberry assembly can be at-245

tributed to its high duplication ratio. The completeness of HairSplitter assemblies decreased with the depth246

of coverage, especially below 20x coverage. The completeness also decreased slightly with the divergence247

of the strains, though the metaQuast completeness remained high (84%) when assembling two strains with248

0.07% divergence. Interestingly, the decline in MetaQUAST completeness with coverage and divergence was249

more pronounced than the decline in 27-mer completeness, highlighting HairSplitter’s effectiveness in sepa-250

rating divergent regions and its difficulties in duplicating homozygous regions. This corresponds to the results251

observed in the Zymo-GMS datasets, where many pairwise divergences of strains were < 1%.252

Viral haplotypes253

The completeness results of the benchmark on the viral datasets are depicted Figure 5 andmore complete254

evaluation of assemblies are available in Supplementary Table 5.255

HaploDMF and HairSplitter managed to separate completely the HBV strains according to MetaQUAST.256

iGDA failed to recover the strains, while Strainberry outputted four different haplotypes instead of two (see257



Figure 5. 27-mer completeness, MetaQUAST completeness and run-time of different software on the two
viral datasets. Note that the run-time is shown in log scale. The Strainline assembly of HBV-2 is not shown
because Strainline could not finish on this dataset.

supplementary Table 5). We checked that HaploDMF and HairSplitter separated the reads adequately, thus258

the slight differences in 27-mers completeness stem from polishing errors.259

HairSplitter stoodout as the sole software capable of successfully recovering all seven strains in theNorovirus260

mix, even capturing the least abundant strain comprising only 1% of themix. To assess the sensitivity limits of261

HairSplitter in the viral context, we conducted two additional experiments within theNorovirusmix. In the first262

experiment, we decreased the relative abundance of the rarest strain to 0.1%, while maintaining 50x cover-263

age by uniformly increasing the coverage of the other strains. Remarkably, HairSplitter still achieved complete264

recovery (99.99% MetaQUAST completeness) of the rarest strain. The limited amount of data prevented us265

to further reduce the strain’s relative abundance. In the second experiment, we uniformly diminished the266

coverage of all strains. The rarest strain was entirely recovered (99.99%MetaQUAST completeness) when cov-267

ered at ≥40x, only the most divergent part of the virus was recovered (26.4% MetaQUAST completeness) at268

coverage 20x and 30x, and the strain was not recovered at all at 10x coverage. The primary determinant of269

HairSplitter’s sensitivity thus seems to be absolute coverage rather than the strain’s relative coverage.270

Discussion271

In this manuscript, we introduce HairSplitter, a pipeline to assemble haplotypes separately using an input272

assembly and long reads. The pipeline includes two main novelties, a program that completes an assembly273

graph and a read separation procedure. HairSplitter proved useful when dealing with noisy data (≥ 1% error274

rate), whereas its usefulness on HiFi reads compared to specialised software such as hifiasm or stRainy is de-275

batable. We show that HairSplitter can effectively separate several highly similar strains in both bacterial and276

viral contexts. Compared to the state of the art, HairSplitter can deal with a higher number of strains, lower277

relative abundances and lower strain divergence, while maintaining a low computational cost.278

279

HairSplitter encounters a major limitation when strains have many homozygous regions. In these regions,280

it is not possible to assign reads to specific haplotype groups, making it necessary to duplicate the homozy-281

gous regions to their correct multiplicity in order to fully recover the strains. This study has demonstrated282

that this is a challenging problem that current assemblers have not been able to successfully address in the283

HiFi dataset. Further investigation is needed to solve this issue. A lead could be to use astutely the topology284

of the assembly graph.285

286

A direction for future work would also be to generalize the assembly graph completion module. The idea287

of the module is to make sure all reads align end-to-end onto the assembly graph. We believe such a module288

could be useful to improve many assemblies. However, the version implemented for now in HairSplitter is289

very basic and does not perform well in repeated, complicated regions of the graph. A more sophisticated290

module could involve local reassembly and iterative graph completion.291

292



Since HairSplitter is already successful at separating both bacterial and viral haplotypes, we expect to be293

able to extend this work naturally towards the phasing of polyploid organisms, including highly heterozygous294

non-model organisms, which remains an open problem (Guiglielmoni et al., 2021). For this particular case,295

some extra information could be leveraged to improve the HairSplitter pipeline, such as the fact that all hap-296

lotypes are expected to be equally abundant and that the total number of haplotype is usually known.297

Reproducibility and data availablility298

The HairSplitter code can be found on github at https://github.com/rolandfaure/hairsplitter.299

The experiments were run with Flye 2.9.2-b1786, hifiasm HairSplitter v1.9.4, HaploDMF commit a07d082c3,300

Strainline commit 8d26341, iGDA commit 54ecec9, Strainberry v1.1, stRainy commit 34573cd, hifiasm-meta301

v0.3-r063.2, minimap2 v2.26-r1175 and Quast v5.2.0.302

HBV sequencing reads can be found under accession number ERR3253560 in SRA. The sevenNorovirus sets303

of reads can be found under accession numbers SRR13951181, SRR13951181, SRR13951186, SRR13951185,304

SRR13951184, SRR13951165 and SRR13951160. The Vagococcus fluvialis data are accessible under project305

PRJNA755170 in SRA. The Zymo-GMS sequencing data can be found under accession numbers SRR17913200,306

SRR17913199 and SRR13128013.307

All the assemblies, simulated data and command lines used are available on Zenodo, DOI 10.5281/zen-308

odo.10495033, https://zenodo.org/records/11639887.309

Acknowledgments310

We thankUlysse Faure for hismathematical help. Alexandros Vasilikopoulos, AndrewWoodruff andAlessan-311

dro Derzelle tested HairSplitter and kindly helped debugging.312

We acknowledge the GenOuest bioinformatics core facility (https://www.genouest.org) for providing the313

computing infrastructure. The programs Tablet (Milne et al., 2013) and Bandage (RR Wick et al., 2015) were314

used to visualize data while developing HairSplitter.315

For the purpose of Open Access, a CC-BY public copyright licence has been applied by the authors to the316

present document andwill be applied to all subsequent versions up to the Author AcceptedManuscript arising317

from this submission318

Fundings319

This work was funded by a Ph.D. AMX grant.320

Conflict of interest disclosure321

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in relation322

to the content of the article. The authors declare the following non-financial conflict of interest: Jean-François323

Flot is a recommender of PCI Genomics.324

References325

Bertrand D, J Shaw, M Kalathiyappan, AHQ Ng, MS Kumar, C Li, M Dvornicic, JP Soldo, JY Koh, C Tong, OT Ng,326

T Barkham, B Young, K Marimuthu, KR Chng, M Sikic, and N Nagarajan (Aug. 2019). Hybrid metagenomic327

assembly enables high-resolution analysis of resistance determinants and mobile elements in human mi-328

crobiomes. en. Nature Biotechnology 37, 937–944. ISSN: 1087-0156, 1546-1696. https://doi.org/10.1038/329

s41587-019-0191-2.330

https://github.com/rolandfaure/hairsplitter
https://zenodo.org/records/11639887
https://doi.org/10.1038/s41587-019-0191-2
https://doi.org/10.1038/s41587-019-0191-2
https://doi.org/10.1038/s41587-019-0191-2


Biemann C (July 2006). Chinese whispers: An efficient graph clustering algorithm and its application to natural331

language processing problems. Proceedings of TextGraphs, 73–80.332

Cai D, J Shang, and Y Sun (Oct. 2022). HaploDMF: viral Haplotype reconstruction from long reads via Deep333

Matrix Factorization. Bioinformatics 38. https://doi.org/10.1093/bioinformatics/btac708.334

Ceppellini R, E Curtoni, P Mattiuz, V Miggiano, G Scudeller, and A Serra (1967). Genetics of leukocyte antigens:335

a family study of segregation and linkage. In: Report of Histocompatibility testing 1967. Ed. by Curtoni E.S.336

Mattiuz P.L. TR.337

Cesare Md, M Chimfwembe, A Jeffreys, J Chirwa, C Drakeley, K Schneider, B Mambwe, K Glanz, C Ntalla, M338

Carrasquilla, S Portugal, R Verity, J Bailey, I Ghinai, G Busby, B Hamainza, M Hawela, D Bridges, and J339

Hendry (Feb. 2024). Flexible and cost-effective genomic surveillance of P. falciparummalaria with targeted340

nanopore sequencing. Nature Communications 15. https://doi.org/10.1038/s41467-024-45688-z.341

Cheng H, G Concepcion, X Feng, H Zhang, and H Li (Feb. 2021). Haplotype-resolved de novo assembly using342

phased assembly graphs with hifiasm. Nature Methods 18, 1–6. https : / /doi .org/10 .1038/s41592- 020-343

01056-5.344

CobanO, G Deyn, andMPloeg (Mar. 2022). Soil microbiota as game-changers in restoration of degraded lands.345

Science 375, abe0725. https://doi.org/10.1126/science.abe0725.346

Conlon M and A Bird (Dec. 2014). The Impact of Diet and Lifestyle on Gut Microbiota and Human Health.347

Nutrients 7, 17–44. https://doi.org/10.3390/nu7010017.348

DeGroot M and M Schervish (Jan. 2002). Probability and Statistics. Pearson. ISBN: ISBN 978-0-321-50046-5.349

Faure R, N Guiglielmoni, and JF Flot (Feb. 2021). GraphUnzip: unzipping assembly graphs with long reads and350

Hi-C. bioRxiv. https://doi.org/10.1101/2021.01.29.428779.351

Feng X, H Cheng, D Portik, and H Li (June 2022). Metagenome assembly of high-fidelity long reads with hifiasm-352

meta. Nature Methods 19, 1–4. https://doi.org/10.1038/s41592-022-01478-3.353

Feng Z, J Clemente, B Wong, and E Schadt (May 2021). Detecting and phasing minor single-nucleotide variants354

from long-read sequencing data. Nature Communications 12, 3032. https://doi.org/10.1038/s41467-021-355

23289-4.356

Fix E and JL Hodges (1989). Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties.357

International Statistical Review 57, 238–247. ISSN: 03067734, 17515823.358

Flint A, S Reaume, J Harlow, E Hoover, K Weedmark, and N Nasheri (Sept. 2021). Genomic Analysis of Human359

Noroviruses Using Combined Illumina-Nanopore Data. Virus Evolution 7. https : / /doi . org /10 .1093 /ve /360

veab079.361

Frank C, D Werber, JP Cramer, M Askar, M Faber, M an der Heiden, H Bernard, A Fruth, R Prager, A Spode,362

M Wadl, A Zoufaly, S Jordan, MJ Kemper, P Follin, L Müller, LA King, B Rosner, U Buchholz, K Stark, and G363

Krause (2011). Epidemic Profile of Shiga-Toxin–Producing Escherichia coli O104:H4 Outbreak in Germany.364

New England Journal of Medicine 365, 1771–1780. https://doi.org/10.1056/NEJMoa1106483.365

Ghurye J, V Cepeda-Espinoza, and M Pop (Sept. 2016). Metagenomic Assembly: Overview, Challenges and366

Applications. The Yale Journal of Biology and Medicine 89, 353–362.367

Guiglielmoni N, A Houtain, A Derzelle, K Doninck, and JF Flot (June 2021). Overcoming uncollapsed haplotypes368

in long-read assemblies of non-model organisms. BMC Bioinformatics 22. https://doi.org/10.1186/s12859-369

021-04118-3.370

Kang X, X Luo, and A Schönhuth (Sept. 2022). StrainXpress: strain aware metagenome assembly from short371

reads. en. Nucleic Acids Research 50, e101–e101. ISSN: 0305-1048, 1362-4962. https://doi.org/10.1093/nar/372

gkac543.373

Kazantseva E, A Donmez, M Pop, and M Kolmogorov (Feb. 2023). stRainy: assembly-based metagenomic strain374

phasing using long reads. en. preprint. Bioinformatics. https://doi.org/10.1101/2023.01.31.526521.375

Kolmogorov M, DM Bickhart, B Behsaz, A Gurevich, M Rayko, SB Shin, K Kuhn, J Yuan, E Polevikov, TPL Smith,376

and PA Pevzner (Nov. 2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. en.377

Nature Methods 17, 1103–1110. ISSN: 1548-7091, 1548-7105. https://doi.org/10.1038/s41592-020-00971-x.378

https://doi.org/10.1093/bioinformatics/btac708
https://doi.org/10.1038/s41467-024-45688-z
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1126/science.abe0725
https://doi.org/10.3390/nu7010017
https://doi.org/10.1101/2021.01.29.428779
https://doi.org/10.1038/s41592-022-01478-3
https://doi.org/10.1038/s41467-021-23289-4
https://doi.org/10.1038/s41467-021-23289-4
https://doi.org/10.1038/s41467-021-23289-4
https://doi.org/10.1093/ve/veab079
https://doi.org/10.1093/ve/veab079
https://doi.org/10.1093/ve/veab079
https://doi.org/10.1056/NEJMoa1106483
https://doi.org/10.1186/s12859-021-04118-3
https://doi.org/10.1186/s12859-021-04118-3
https://doi.org/10.1186/s12859-021-04118-3
https://doi.org/10.1093/nar/gkac543
https://doi.org/10.1093/nar/gkac543
https://doi.org/10.1093/nar/gkac543
https://doi.org/10.1101/2023.01.31.526521
https://doi.org/10.1038/s41592-020-00971-x


Konstantinidis K and J Tiedje (Mar. 2005). Genomic insights that advance the species definition for prokaryotes.379

Proceedings of the National Academy of Sciences of the United States of America 102, 2567–72. https://doi.org/380

10.1073/pnas.0409727102.381

Koren S, BPWalenz, K Berlin, JR Miller, NH Bergman, and AM Phillippy (May 2017). Canu: scalable and accurate382

long-read assembly via adaptive k -mer weighting and repeat separation. en. Genome Research 27, 722–383

736. ISSN: 1088-9051, 1549-5469. https://doi.org/10.1101/gr.215087.116.384

Li H (Sept. 2018). Minimap2: pairwise alignment for nucleotide sequences. en. Bioinformatics 34. Ed. by Birol I,385

3094–3100. ISSN: 1367-4803, 1367-4811. https://doi.org/10.1093/bioinformatics/bty191.386

Li H, X Feng, and C Chu (Oct. 2020). The design and construction of reference pangenome graphs with mini-387

graph. Genome Biology 21, 265. https://doi.org/10.1186/s13059-020-02168-z.388

Luo C, R Knight, H Siljander, M Knip, R Xavier, and D Gevers (Sept. 2015). ConStrains identifies microbial strains389

in metagenomic datasets. Nature biotechnology 33. https://doi.org/10.1038/nbt.3319.390

Luo R and Y Lin (2023). VStrains: De Novo Reconstruction of Viral Strains via Iterative Path Extraction from As-391

sembly Graphs. In: Research in Computational Molecular Biology. Ed. by Tang H. Cham: Springer Nature392

Switzerland, pp. 3–20. ISBN: 978-3-031-29119-7.393

Luo X, X Kang, and A Schönhuth (Jan. 2022). Strainline: full-length de novo viral haplotype reconstruction from394

noisy long reads. Genome Biology 23. https://doi.org/10.1186/s13059-021-02587-6.395

Magazine N, T Zhang, Y Wu, M McGee, G Veggiani, and W Huang (Mar. 2022). Mutations and Evolution of the396

SARS-CoV-2 Spike Protein. Viruses 14, 640. https://doi.org/10.3390/v14030640.397

McNaughton A, H Roberts, D Bonsall, Md Cesare, J Mokaya, S Lumley, T Golubchik, P Piazza, J Martin, C Lara,398

A Brown, M Ansari, R Bowden, E Barnes, and P Matthews (May 2019). Illumina and Nanopore methods for399

whole genome sequencing of hepatitis B virus (HBV). Scientific Reports 9. https://doi.org/10.1038/s41598-400

019-43524-9.401

Medaka (2018). github.com/nanoporetech/medaka.402

Mikheenko A, V Saveliev, and A Gurevich (Nov. 2015). MetaQUAST: Evaluation of metagenome assemblies.403

Bioinformatics 32, btv697. https://doi.org/10.1093/bioinformatics/btv697.404

Milne I, G Stephen, M Bayer, PJA Cock, L Pritchard, L Cardle, PD Shaw, and DMarshall (Mar. 2013). Using Tablet405

for visual exploration of second-generation sequencing data. en. Briefings in Bioinformatics 14, 193–202.406

ISSN: 1467-5463, 1477-4054. https://doi.org/10.1093/bib/bbs012.407

Quince C, S Nurk, S Raguideau, R James, OS Soyer, JK Summers, A Limasset, AM Eren, R Chikhi, and AE Darling408

(Sept. 2020). Metagenomics Strain Resolution on Assembly Graphs. en. preprint. Bioinformatics. https://doi.409

org/10.1101/2020.09.06.284828.410

Rodriguez Jimenez A, N Guiglielmoni, L Goetghebuer, E Dechamps, I George, and JF Flot (Aug. 2022). Com-411

parative genome analysis of Vagococcus fluvialis reveals abundance of mobile genetic elements in sponge-412

isolated strains. BMC Genomics 23. https://doi.org/10.1186/s12864-022-08842-9.413

Runtuwene L, J Tuda, A Mongan, and Y Suzuki (Apr. 2019). On-Site MinION Sequencing. In: pp. 143–150. ISBN:414

978-981-13-6036-7. https://doi.org/10.1007/978-981-13-6037-4_10.415

Vaser R, I Sovic, N Nagarajan, and M Sikic (Jan. 2017). Fast and accurate de novo genome assembly from long416

uncorrected reads. Genome Research 27, gr.214270.116. https://doi.org/10.1101/gr.214270.116.417

Vicedomini R, C Quince, AE Darling, and R Chikhi (July 2021). Strainberry: automated strain separation in low-418

complexity metagenomes using long reads. en. Nature Communications 12, 4485. ISSN: 2041-1723. https:419

//doi.org/10.1038/s41467-021-24515-9.420

Ward N (Apr. 2006). New directions and interactions in metagenomics research. FEMS microbiology ecology 55,421

331–8. https://doi.org/10.1111/j.1574-6941.2005.00055.x.422

Wick R (Apr. 2019). Badread: simulation of error-prone long reads. Journal of Open Source Software 4, 1316.423

ISSN: 2475-9066. https://doi.org/10.21105/joss.01316.424

https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1038/nbt.3319
https://doi.org/10.1186/s13059-021-02587-6
https://doi.org/10.3390/v14030640
https://doi.org/10.1038/s41598-019-43524-9
https://doi.org/10.1038/s41598-019-43524-9
https://doi.org/10.1038/s41598-019-43524-9
github.com/nanoporetech/medaka
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1093/bib/bbs012
https://doi.org/10.1101/2020.09.06.284828
https://doi.org/10.1101/2020.09.06.284828
https://doi.org/10.1101/2020.09.06.284828
https://doi.org/10.1186/s12864-022-08842-9
https://doi.org/10.1007/978-981-13-6037-4_10
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1038/s41467-021-24515-9
https://doi.org/10.1038/s41467-021-24515-9
https://doi.org/10.1038/s41467-021-24515-9
https://doi.org/10.1111/j.1574-6941.2005.00055.x
https://doi.org/10.21105/joss.01316


Wick RR, MB Schultz, J Zobel, and KE Holt (Oct. 2015). Bandage: interactive visualization of de novo genome425

assemblies. en. Bioinformatics 31, 3350–3352. ISSN: 1367-4811, 1367-4803. https : / / doi . org / 10 . 1093 /426

bioinformatics/btv383.427

https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1093/bioinformatics/btv383


Supplementary material428



Complet-
-eness (%)

Duplication
ratio NGA50 #misas-

-semblies
#mismatches
per 100 kbp

# indels
per 100 kbp

Assembly
length (Mb)

Vagococcus metaFlye 26.90 1.097 - 40 340.14 383.57 4.4
fluvialis metaFlye + iGDA 44.530 1.151 1313 2 115.57 391.70 7.4

metaFlye + Strainberry 33.112 1.119 - 45 77.71 510.25 5.5
metaFlye + HairSplitter 58.150 1.066 19881 31 102.49 410.95 9.1

Zymo-GMS Q9* metaFlye 28.365 1.048 - 66 286.86 38.80 7.4
metaFlye + iGDA 61.293 1.489 12450 21 225.67 41.30 22.6
metaFlye + Strainberry 23.166 1.072 - 45 191.51 51.65 6.1
metaFlye + HairSplitter 72.293 1.105 9974 24 65.77 39.60 19.8

Zymo-GMS Q20* metaFlye 28.742 1.051 - 62 300.25 34.41 7.5
metaFlye + iGDA 39.650 1.118 - 8 181.55 28.23 11.0
metaFlye + Strainberry 59.197 1.138 28421 66 193.55 42.42 16.7
metaFlye + HairSplitter 63.837 1.022 12000 43 40.01 21.69 16.2

Zymo-GMS HiFi* metaFlye 66.064 1.076 79832 39 92.55 6.65 17.6
metaFlye + iGDA 42.996 1.515 17104 15 102.70 9.96 16.1
metaFlye + Strainberry 72.016 1.142 53249 46 57.53 6.92 20.4
metaFlye + HairSplitter 84.418 1.286 25851 69 32.35 12.16 26.9
metaFlye + stRainy 97.078 1.737 41195 47 44.15 12.26 41.8
hifiasm 98.732 1.911 288422 82 30.07 4.99 46.7

Table 2. metaQuast metrics of the bacterial assemblies obtained from experimental data. *metrics are com-
puted with respect to the 5 E. coli strains, not the complete dataset - the assembly length is the aligned assem-
bly length on the E. coli reference



Complet-
-eness (%)

Duplication
ratio NGA50 #misas-

-semblies
#mismatches
per 100 kbp

# indels
per 100 kbp

Assembly
length (Mb)

# strains
2 metaFlye 57.137 1.043 61559 22 216.18 216.53 6.1

metaFlye + Strainberry 99.268 1.074 701492 11 24.83 64.73 10.8
metaFlye + HairSplitter 99.716 1.008 396746 1 8.21 42.73 10.2

4 metaFlye 40.666 1.071 - 50 562.91 268.83 8.9
metaFlye + Strainberry 95.631 1.148 251144 39 93.07 81.88 22.3
metaFlye + HairSplitter 99.109 1.064 109320 39 25.74 50.83 21.3

6 metaFlye 28.949 1.087 - 63 585.20 264.89 9.4
metaFlye + Strainberry 47.430 1.108 8151 90 289.19 92.23 15.7
metaFlye + HairSplitter 96.717 1.086 77500 125 52.55 56.23 31.1

8 metaFlye 27.599 1.051 - 76 527.44 277.85 11.5
metaFlye + Strainberry 90.438 1.533 83755 157 179.31 172.25 54.7
metaFlye + HairSplitter 96.759 1.180 45253 244 87.74 84.97 45.1

10 metaFlye 23.130 1.036 - 79 469.27 277.71 11.7
metaFlye + Strainberry 34.207 1.095 - 175 363.06 137.01 18.2
metaFlye + HairSplitter 94.045 1.192 41223 262 93.74 66.47 54.5

coverage
30x* metaFlye 30.618 1.032 - 1 719.80 55.27 1.7

metaFlye + Strainberry 28.188 1.085 - 2 347.21 127.06 1.7
metaFlye + HairSplitter 90.206 1.170 40243 19 143.08 41.63 5.8

20x* metaFlye 29.522 1.018 - 6 859.11 76.03 1.7
metaFlye + Strainberry 20.562 1.037 - 3 274.86 102.01 1.2
metaFlye + HairSplitter 87.948 1.093 37879 22 130.95 77.82 5.2

10x* metaFlye 18.201 1.005 - 1 498.17 85.10 1.0
metaFlye + Strainberry 16.178 1.007 - 1 347.06 181.70 0.9
metaFlye + HairSplitter 58.172 1.054 10763 6 214.47 117.59 3.3

5x* metaFlye 12.020 1.010 - 2 849.88 201.29 0.6
metaFlye + Strainberry 9.807 1.013 - 2 422.61 273.49 0.5
metaFlye + HairSplitter 24.746 1.082 - 2 464.50 197.55 1.5

divergence
H5 metaFlye 54.246 1.002 19206 22 324.97 29.23 5.1
(1.09%) metaFlye + Strainberry 98.157 1.001 652572 2 324.97 1.35 9.3

metaFlye + HairSplitter 99.419 1.008 294365 6 8.08 15.25 9.4
AMSCJX03 metaFlye 54.783 1.001 18675 17 254.48 28.42 5.0
(0.91%) metaFlye + Strainberry 93.390 1.003 279448 3 0.73 1.98 8.6

metaFlye + HairSplitter 99.456 1.002 387661 11 10.96 23.29 9.2
RM74721 metaFlye 54.254 1.000 19360 19 132.60 11.73 5.0
(0.57%) metaFlye + Strainberry 92.256 1.006 380826 1 2.97 8.57 8.6

metaFlye + HairSplitter 98.957 1.007 265482 14 15.54 29.08 9.2
EC590 metaFlye 54.132 1.000 17337 10 117.79 12.85 5.0
(0.45%) metaFlye + Strainberry 71.749 1.003 156627 10 9.29 1.72 6.6

metaFlye + HairSplitter 95.697 1.024 190750 6 6.46 24.51 9.0
Y5 metaFlye 54.736 1.002 22104 21 63.85 9.38 5.2
(0.38%) metaFlye + Strainberry 72.758 1.006 181387 13 8.64 3.28 6.9

metaFlye + HairSplitter 97.154 1.024 253619 8 40.80 52.36 9.4
LD27-1 metaFlye 53.295 1.001 19411 8 43.83 5.33 5.0
(0.27%) metaFlye + Strainberry 62.101 1.004 112749 13 7.41 3.53 5.8

metaFlye + HairSplitter 88.101 1.055 137245 2 95.36 97.47 8.6
ME8067 metaFlye 50.820 1.000 47356 8 10.29 3.19 4.7
(0.07%) metaFlye + Strainberry 50.820 1.000 47356 8 10.29 3.19 4.7

metaFlye + HairSplitter 86.419 1.064 131660 0 84.75 80.83 8.5

Table 3. metaQuast metrics of the bacterial assemblies obtained from simulated Nanopore R10.4.1 data. *
The metrics displayed for the downsampled datasets are the metrics computed with respect to the downsam-
pled strain, and not with respect to the complete 10 strains.



Completeness (%) Duplication
ratio NGA50 #misassemblies # mismatches

per 100 kbp
# indels

per 100 kbp

HBV-2 Strainberry 99.984 2.174 4504 3 881.59 1562.50
iGDA 54.174 1.001 1081 0 201.15 229.89
Strainline
HaploDMF 99.984 1.000 3207 0 15.58 93.46
HairSplitter 99.953 1.001 3209 0 46.72 109.02

norovirus Strainberry 14.283 1.000 - 0 52.97 13.24
iGDA 69.514 1.548 2838 0 112.55 15.83
Strainline 29.659 5.787 7541 0 479.44 136.67
HaploDMF 85.702 1.000 7549 0 165.60 26.50
HairSplitter 100.000 1.038 7550 0 107.57 35.96

Table 4. metaQuast metrics of the viral assemblies.



Number of strains metaFlye assembly metaFlye assembly
after graph completion

2 N50 374204 374204
#misassemblies 22 20

4 N50 136064 47179
#misassemblies 50 17

6 N50 78959 36209
#misassemblies 63 12

8 N50 73412 32985
#misassemblies 76 18

10 N50 55801 26906
#misassemblies 79 19

Table 5. N50 andmetaQuast-measured number of misassemblies of simulated datasets with varying number
of E. coli strains, before and after completing the assembly graph. Since the completion step breaks contigs,
the N50 diminishes. The number of misassemblies diminishes with graph completion.


