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Abstract

Most insects have the ability to modify the odor landscape in or-
der to communicate with their conspecies during key phases of their
life cycle such as reproduction. They release pheromones in their
nearby environment, volatile compounds that are detected by insects
of the same species with exceptional specificity and sensitivity. Effi-
cient pheromone detection is then an interesting lever for insect pest
management in a precision agroecological culture context. A precise
and early detection of pests using pheromone sensors offers a strategy
for pest management before infestation.

In this paper, we develop a biology-informed inverse problem frame-
work that leverages temporal signals from a pheromone sensor network
to build insect presence maps. Prior biological knowledge is intro-
duced in the inverse problem by the mean of a specific penalty, using
population dynamics PDE residuals. We benchmark the biological-
informed penalty with other regularization terms such as Tikhonov,
LASSO or composite penalties in a simplified toy model. We use
classical comparison criteria, such as target reconstruction error, or
Jaccard distance on pest presence-absence. But we also use more
task-specific criteria such as the number of informative sensors during
inference. Finally, the inverse problem is solved in a realistic context
of pest infestation in an agricultural landscape by the fall armyworm
(Spodoptera frugiperda).

keywords: Inverse problem, data assimilation, biology-informed estima-
tion, PDE, pest detection, pheromone.
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1. Introduction

Insect pests represent a major threat for agricultural systems, causing direct or indirect dam-
ages to crops (Oerke, 2006), with an even increasing burden in a warming climate (Deutsch et al.,
2018).World trade, travel and climate changes increase the arrival of alien species that challenge
existing pest control management for native insects (EFSA PLH Panel et al., 2018). Intensified in-5

secticide use is not sustainable, due notably to the negative impact of pesticides on biodiversity,
environment and human health. Alternative solutions must be developed: a promising perspec-
tive is the development of precision agriculture which aims in particular to leverage sensors and
information systems to reduce the environmental impact of agricultural practices (Gebbers et
al., 2010). In that perspective, early detection of pests before infestation settlement can help10

designing low-pesticide crop management and epidemiological surveillance policies.

Insect pheromones are a good target for early detection of pests (Conchou et al., 2019). In-
deed, insects pheromones are species-specific, guaranteeing a good specificity of any pheromone-
based detection. Pheromone specificity has long been leveraged for insect detection with the
mean of pheromone traps: pheromone diffusion modifies the odor landscape, attracting the tar-15

geted insects toward traps where they can be counted (McNeil, 1991). However, if pheromone
traps allow for presence/absence detections, they do not allow to accurately locate the insects
in their natural habitat. Recently, new advances in sensor developments paved the way towards
field-based tools to explore in situ pheromone plumes. These sensors have different operating
principles: there are insect antenna-based biosensors (Martinez et al., 2014; Myrick et al., 2011;20

Pawson et al., 2020), olfactory receptor-based biosensors (Khadka et al., 2019), OBP-based
biosensors (Lu et al., 2014), and e-nose technologies based on conducting polymers, metal oxide
semiconductor and other devices (Moitra et al., 2016; Negri et al., 2008; Steffens et al., 2014;
Wehrenfennig et al., 2012). The use of pheromone sensors could allow to directly measure the
odor landscape and track back pheromone plumes towards emitters, in order to detect pests at25

an early stage of invasion.

From a mathematical point of view, the problem of locating the emission source of a mole-
cule knowing measures of the emission plume belongs to the class of inverse problems (Isakov,
2017), the direct problem ofwhich is a plume propagationmodel. Atmospheric dispersion, plume
propagation, and plume-related inverse problems have a large literature, in particular for envi-30

ronmental applications, such as pollution detection (Lushi et al., 2010; Stockie, 2011). Inverse
problems, and more specifically data assimilation problems, are most often formulated as an op-
timization problem aiming to minimize the discrepancies between the direct model outputs and
in-field observations by fitting the model parameters (Isakov, 2017). In the specific case where
insects are the emitters, locating the emission source amounts to searching for continuous den-35

sity maps of pests, which induces a high dimensional parameter space to be explored during the
inverse problem. Variational approaches are well suited for such high-dimensional optimization
problem, for fast computation of gradients of the objective function (Bocquet, 2014). Inverse
problems are most of the time ill-posed and must be regularized by additional terms in the loss
function that constrain the parameter exploration, e.g. with LASSO regularization term (Adam40

et al., 2016). Other regularization can be searched for, that could take into account prior bio-
logical knowledge incorporated into models, like in physic or biology-informed machine learning
approaches (Yazdani et al., 2020), through weak or strong constraints (Trémolet, 2007).

In conventional agricultural practices, farmers often use pesticide prophylactically: knowing
the potential occurrence of an infestation, and lacking efficientways tomonitor pest populations,45

they apply pesticides as a preventive measure, even before a pest is observed. Consequently,



sensors capable of measuring the spatio-temporal distribution of pest populations could poten-
tially allow the farmers to reduce the frequency, dose and area of treatment by spraying when,
where and to the extent that the pest is detected. If we interpret this prophylactic strategy in
the context of a classification problem, it is as if they were classifying all their fields as "infected"50

whatever their actual state of infestation, thus minimizing their miss rate, i.e. a non detected
true presence of pest. In so doing, they also maximize their false discovery rate. In order to mini-
mize pesticide use, we would like to minimize the false discovery rate, so that pesticides are only
used where and when a detected pest is actually present in the field. But, according to a classical
trade-off in classification problems, reducing the false discovery rate comes with an increase of55

the miss rate, so that the detection problem could be reformulated as follows: find the minimal
false discovery rate that keeps the miss rate under an acceptable risk, from the point of view of
crop protection.

The main objective of this paper is to introduce and test a data assimilation framework,
namely the biology-informed data assimilation, which seeks to combine a pheromone propa-60

gation model and pheromone sensors data, like in classical data assimilation, but also biological
information. In particular, we specifically aim to introduce biology-informed regularization terms,
on which the biology-informed data assimilation is based, in order to assess how adding biologi-
cal priors improves the accuracy of the data assimilation. Several comparison criteria will be used.
In particular, we will introduce a specific criteria designed to compare the number of active sen-65

sors involved during the inference process.

2. Material and methods

A sketch of the global methodological framework can be found in Fig. 1. Themethod contains
three blocks that will be detailed hereafter:

1) the direct problem that aims to model the pheromone propagation in the atmosphere70

over an agricultural landscape, taking into account environmental data such as land use
or wind field, see Sec. 2.1;

2) the pheromone sensors that provide data of the observed variable and an observation
operator that maps the state variable of the direct model to the observed variable, see
Sec. 2.3.1;75

3) the corresponding inverse problem that aims to infer pheromone emissions by the insects
and enables the construction of pests risk maps, knowing the data and the pheromone
propagation model, see Sec. 2.2.

The proposed framework is illustrated with a toy case and a more realistic case, set up in an
agricultural landscape, see Sec. 2.3.2. In the different test cases, the datasets are synthetic and80

constructed from a spatio-temporal sampling of pheromone concentration and a realistic model
of the observation process.

2.1. 2D reaction-convection-diffusion model for the pheromone propagation

One of the most classical model to simulate propagation of chemical species in the atmo-
sphere is a 3D Chemical-Transport Model (CTM), that has been extensively reviewed (Leelössy85

et al., 2014; Sportisse, 2007). The CTM is obtained from the reactive Navier-Stokes equations
by using the dilution hypothesis. This hypothesis is valid when the chemical species of interest
is present in very small amounts. In this case, the compound is assumed to be chemically pas-
sive, which results in a decoupling between atmospheric dynamics and compound concentration
dynamics. As a consequence, dynamical field such as the wind or the diffusion coefficients can90
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Figure 1 – Graphical abstract: summary of the proposed Biology-Informed Data As-
similation method for the pest insects localization. A classical Data Assimilation (DA)
framework is first built, combining a pheromone propagation model (blue rectangle),
pheromone sensors (red rectangle) into an inverse problem (green rectangle). Addition-
ally to this classical DA framework, biological information can be supplemented through
specific regularization terms of the DA problem (purple rectangle). These regularization
terms are the main insights of this study.



be computed separately, offline, and given as parameters of the CTM. It results that this (linear
and offline-coupled) CTM is much less complex than the full (non-linear) reactive Navier-Stokes
equations, or than a CTM coupled online with a fine scale Navier-Stokes model (Leelössy et al.,
2014), while being a reliable approximation: it is able to model the main physical phenomena at
play during the transportation of pheromones.95

In the present context, only the lower layer of the atmosphere, where insects and sensors
are located, is of interest. Hence, for sake of computation load and data availability in real ap-
plications, a 2D depth-integrated CTM is used to model the total concentration of pheromone
over the depth of the layer c(x , y , t) [gm−2] on a domain Ω ∈ R

2 and during a time window
[0;T ]. This depth-integrated CTM results in a 2D reaction-convection-diffusion model, that can100

be derived from the classical 3D CTM, see Sec. B.1 in the annex for details, and reads:

(1)
∂c

∂t
− ∇ · (K∇c) + ∇ · (u⃗c) + τlossc = s ∀(x , y) ∈ Ω, ∀t ∈ [0;T ]

The coefficient K(x , y , t) [m2 s−1] is the diffusion tensor. This tensor models the turbulent diffu-
sion at an unresolved scale (classically, scale smaller than the scale of the numerical grid) using
the K theory, see e.g. (Panofsky et al., 1984; Sportisse, 2007). As mentioned above, in CTM, the
wind velocity field u⃗(x , y , t) = (u(x , y , t), v(x , y , t)) [ms−1] is given as parameter, where (u, v)105

are the velocity field components along x and y . For example, u⃗ can be computed using a large
(meso-scale) meteorological model and then, taken as input data in the present CTM, see an
example in Sec. 2.3.2 and on Fig. 3a. The loss coefficient τloss(x , y , t) [s−1] models the loss of
pheromone due to vertical phenomena, including pheromone settlement on the ground and ver-
tical diffusion spreading the pheromone out of the layer of interest. Hence, τloss depends on the110

land cover and on the stability of the atmosphere, see estimations of this coefficient in Sec. B.1.3.
Other features can also be included in this parameter, such as humidity-dependent deposition.
In the following, the solution of the CTM model is also referred to as the pheromone plume.

In Eq. (1), the source term s(x , y , t) [gm−2 s−1] is the quantity of pheromone emitted by the
insects located in (x , y , t) per unit of area and time. We highlight that this source term s is the115

quantity to infer to deduce the localization of the insects. Namely, this quantity can be decom-
posed in

(2) s(x , y , t) = q(t)p(x , y , t)

with q(t) [g s−1] the pheromone emission rate, and p(x , y , t) [m−2] the insect density on the
ground, so that there is a direct relationship between s and the local presence of pests. The
emission rate q can incorporate biological information, such as insect-specific emission patterns.120

The 2D model (1) is closed by the following initial and boundary conditions:

• a null initial condition c(x , y , t = 0) = 0 ∀(x , y) ∈ Ω, as the initial time is set before any
pheromone emission in a context of primary invasion,

• a null diffusive flux K∇c · n⃗ = 0 ∀(x , y) ∈ ∂Ω,
• a null convective influx u⃗c · n⃗ = 0 ∀(x , y) ∈ ∂Ω∩ {(x , y)|⃗u(x , y , t) · n⃗ < 0} ∀t ∈]0;T ] with125

n⃗ the outgoing normal vector.

The pheromone propagation model (1) is solved using an implicit upwind finite volume scheme
on a Cartesian grid. This scheme has been implemented in the git repository of the PheroSensor
project, see (Malou et al., 2024c) and Sec. A. In this repository, one can found convergence tests130

of this numerical scheme. The companion code (Malou et al., 2024a) is also available to reproduce
the different computations and figures of this study.

https://forgemia.inra.fr/pherosensor/pherosensor-toolbox
https://www.cultiver-proteger-autrement.fr/cultiver-proteger-autrement-eng/projects/pherosensor
https://www.cultiver-proteger-autrement.fr/cultiver-proteger-autrement-eng/projects/pherosensor
https://www.cultiver-proteger-autrement.fr/cultiver-proteger-autrement-eng/projects/pherosensor


2.2. Variational Data Assimilation for insect localization

We aim to approximate insect risk maps by inferring the spatial distribution of emitted phero-
mones. This inverse problem consists in estimating the source term s of the pheromone propaga-135

tionmodel (1), using time-series of pheromone concentration. To this purpose, we useVariational
Data Assimilation (VDA) techniques.

2.2.1. Minimization problem. VDA consists in finding the value of the control variable, s(x , y , t)
for all (x , y , t) ∈ Ω × [0;T ], that enables the prediction made by the direct model, here the
pheromone propagation model (1), to be close to some observations, here the dataset of phero-140

mone concentration time-series. Therefore, the inference problem is defined as a minimization
problem of a cost function j with respect to the control variable (Bocquet, 2014) that can be
split in an observation and a regularization term:

(3)







Find sa(x , y , t) such that:

sa(x , y , t) = arg min
s(x ,y ,t)

j(s) with j(s) = jobs(s) + jreg (s)

The term jobs aims to minimize the gap between model predictions and data (Bocquet, 2014;
Le Dimet et al., 1986; Sasaki, 1958). It reads145

(4) jobs(s) = ∥m (c(s)) − mobs∥2
R−1

where mobs are the observations, c(s) is the direct model output obtained for a given control s ,
m(c) the observation operator that maps the direct model state variable towards the observa-
tion space and R is the covariance operator of the observation error. Note that the equivalent
statistical notation of eq. (4) reads

mobs = m (c(s)) + ε

where ε is a gaussian noise with zero mean and covariance R.150

The regularization term jreg is commonly added in order to ensure the well-posedness of the
optimization problem, by improving the convexity of j (Bocquet, 2014). Classical regularization
terms are based on a rough background estimate of the control variable, either by a model with
an insufficient accuracy or by coarse data.

The novelty and the results of this study lies on the introduction of Biology-Informed (BI) reg-155

ularization terms that enable to drive the DA method toward an optimum sa consistent with the
biological knowledge introduced in jreg , leading to a Biology-Informed Data Assimilation frame-
work. In general terms, the regularization term reads:

(5) jreg =
∑

i∈L
αreg ,i jreg ,i

with L the list of considered BI regularization terms jreg ,i and αreg ,i the associated weight co-
efficient. This allows for composite regularization terms that take account of several biological160

inputs. The definition of these BI regularization terms is introduced in the Results in Sec. 3.1.

2.2.2. Adjoint model for gradient computation. To solve the minimization problem (3), we use a
gradient-basedmethod, suitable for our convex and differentiable optimization framework. Thus,
at each descent step, the gradient ∇s j must be computed and reads:

∇s j(s) = ∇s jobs(s) + ∇s jreg (s)



Note that we denote ∇s the gradient with respect to the control s to avoid confusion with ∇
the classical gradient with respect to the space variables. Since s is defined in a high-dimensional
space and c(s) involves the computation of a PDE model, the numerical computation of this gra-
dient is challenging, in particular for its observation term∇s jobs . Noting the adjoint operator with165

∗, we compute this gradient by using the adjoint model of the CTM (Lions, 1971; Pudykiewicz,
1998) that reads:

(6) ∂tc
∗ + ∇ · (KT∇c∗) + ∇(u⃗c∗) − (∇.⃗u)c∗ − τlossc

∗ =

(
dm

dc
(c(s))

)∗
· 2R−1

(

m(c(s)) − mobs
)

with c∗ the adjoint state.
The adjoint model (6) is closed by the following final and boundary conditions:

• a null final condition c∗(x , y , t = T ) = 0 ∀(x , y) ∈ Ω,170

• a null diffusive flux KT∇c∗ · n⃗ = 0 ∀(x , y) ∈ ∂Ω,
• a null outgoing convective flux u⃗c∗ ·⃗n = 0 ∀(x , y) ∈ ∂Ω∩{(x , y)|⃗u(x , y , t)·⃗n > 0} ∀t ∈]0;T ]

with n⃗ the outgoing normal vector.

Further details on the derivation of the adjoint model (6) can be found in Sec. B.3.1. This
adjoint model (6) can be interpreted as the retro-propagation with diffusion of the error between175

the prediction of the observed variable and the observations m(c(s))−mobs from the final time
t = T to the initial time t = 0. The output of the adjoint model is also referred to as the retro-
plume in the following. Let us note that the adjoint model (6) requires the observation operator
to be differentiable.

Once the adjoint state is computed, the gradient ∇s j is computed using the expression (see180

more details in Sec. B.3.1):

(7) ∇s j(s) = ∇s jreg (s) − c∗(s)

The gradient-descent algorithm is initiated with a null control s0 = 0.

The adjoint model (6) is solved using an implicit downwind finite volume scheme on the same
Cartesian grid as the direct problem. Thewhole VDAprocess is implemented in the git repository
of the PheroSensor project, see (Malou et al., 2024c) and Sec. A, including the solver of the185

adjoint model and a gradient-descent algorithm. In this repository, one can find convergence
tests of the numerical scheme of the adjoint model, test of the adjoint operators as well as a
validation of the estimation of the gradient by comparison with finite differences.

2.2.3. Sensor contribution to gradient evaluation. We stress that in our context of a network of
independent sensors dispatched over the landscape, we can assume that the observation error190

covariance R is block-diagonal. Moreover, let us note that the left-hand side of Eq. (6) is linear
by definition of the adjoint model. In addition, we assume that the observations operator can be
split into a sum of one-sensor observation operator m(c) =

∑

i mi (c) (avoiding the degenerate
case of overlapping sensors). From this assumption, we can injectm =

∑

i mi in the adjoint model
(6) and split the source term to get the following one-sensor adjoint model:195

(8) ∂tc
∗
i +∇ · (KT∇c∗

i ) +∇(u⃗c∗
i )− (∇.⃗u)c∗

i − τlossc
∗
i =

(
dcmi (c(s))

)∗ · 2R−1
(

mi (c(s)) − mobs
i

)

with c∗
i the one-sensor adjoint state related to the i

th sensor. Since the adjoint model (6) is linear,
it results that the adjoint state c∗ can also be expressed as the sum of the c∗

i :

(9) c∗ =
∑

i

c∗
i .

https://forgemia.inra.fr/pherosensor/pherosensor-toolbox
https://www.cultiver-proteger-autrement.fr/cultiver-proteger-autrement-eng/projects/pherosensor


It results that c∗
i is the contribution of the i th sensor to c∗, and thus to the gradient of jobs . This

observation will be used later to compare the contribution of each sensor to the data assim-
ilation. The comparison of the contribution of each sensor then enables to determine which200

sensors contribute the most and which contribute the less, and to propose strategies for reposi-
tioning the sensors with least contribution. Repositioning strategies based on such comparison
will be used in the realistic case of this study, see more details in Sec. 2.3.2 and the results of the
repositioning strategy in Sec. 3.6

More details on the derivation can be found in the annex Sec. B.3.1. Let us note that in205

our case, the assumption that the observations operator can be split into a sum of one-sensor
observation operator is true, see Sec. 2.3.1.

2.2.4. Stopping criteria. As perMorozov’s discrepancy principle, the optimization algorithm should
be continued until the gap between the observations and the system state achieves the level of
the accuracy of the observations. Hence, the gradient descent algorithm is terminated and the210

optimum sa is assumed to be reached when the cost jobs attains a value lower than the noise
norm ∥ϵ∥2

L2(Ωobs)
.

2.3. Pheromone sensors and test cases

2.3.1. Observation operator of the pheromone sensors. The state variable c is a function defined
over [0,T ]×Ω. We assume that we have at disposal Ns sensors that are dispatched throughout215

the landscape and remain in the same position (xi , yi ) all along the time domain.We furthermore
assume that, given [tobs1 , · · · , tobsNT

] a time sampling of the time domain, every sensor produces a
data at time tobsk , k = 1, · · · ,Nt , so that the observation space O has dimension Ns × Nt . Let us
note ei ,k the vector, for sensor i and time k , of the canonical basis of O.

Then, we define the observation operator c 7→ m(c) mapping the state variable c towards220

the observation space O with the equation

(10) m(c) =
Ns∑

i=1

mi (c) with mi (c) =
Nt∑

k=1

ei ,k

∫ tobs
k

tobs
k

−δt

∫

Ω
δ(xi ,yi )(x , y)c(τ , x , y)dτdxdy

where δ(xi ,yi ) is the Dirac function at the localization of the i th sensor and δt a time window. For
observation k of sensor i , this expression averages over a time window of width δt before the ob-
servation time the pheromone concentration at location (xi , yi ). This models a pre-concentrator
that actively filters air during a time window δt and releases the accumulated quantity into the225

sensor for the mesure. Let us note that the time sampling of the observations must satisfy
δt < tobs1 so that tobs1 − δt > 0. Let us note that in this case, the operator c 7→ m(c) is linear
and is split in the sum of one-sensor observation operators mi , as mentioned in Sec. 2.2.3.

2.3.2. Setting up test cases. All along the paper, we will consider two test cases. The first one is
a simplified yet illustrative scenario, referred to as the Toy case, that will be used to test and ana-230

lyze different biology-informed regularization strategies. The second one depicts a realistic and
representative scenario for invasion of an alien insect in an agricultural landscape. We chose the
fall armyworm (FAW), a.k.a. Spodoptera frugiperda, as the model insect considered in this study.
The FAW is a moth that belongs to the family Noctuidae. This insect pest induces the highest
yield loss for maize (Savary et al., 2019), but can grow on hundreds of plant hosts, causing se-235

vere damage in grasses (IPPC Secretariat, 2021). It is expected that global warming reduces the
populations in the southern America area due to warmer and drier climates (IPPC Secretariat,
2021), but could favour the emergence of the species in the European Union (EFSA PLH Panel



et al., 2018). It is then a suitable test case for a realistic scenario in an epidemiological surveil-
lance framework in Europe. In this section, we will detail the set up of the environmental and240

landscape parameters needed for solving the pheromone propagation model (1) in the two test
cases. The inferencemethod and the additional biology-informed regularization terms are tested
using synthetic dataset generated from a reference source term, hereinafter referred to as the
target source term st . Further details for data generation and inference will be added in this
sections.245

Toy case. The computation spatial domain of the Toy case is a rectangular grid of size 40m×60m

(i.e. 0.24ha) over a time window of T = 20s. It is built up upon a fictive insect that constantly
releases pheromone at an emission rate of q = 2.7pg .s−1 per insect. The insects density is
constant ptoy0 = 0.2m−2 in a fixed area of the domain located in a circular support Ωsupp = S
centred in (xs , ys) = (10, 10) and of radius R = 5m, see red circle in Fig. 2, which corresponds250

to approximatively 16 individuals. The wind field u is constructed from a constant wind speed
|⃗u| = 8m.s−1 and a spatially-homogeneous time-dependent wind direction that linearly varies
from θ = π

4 at t = 0 to θ = π
2 at t = T . The loss coefficient τloss is computed to approximate

realistic vertical fluxes in a 3D simplified CTM model (see more details in Sec. B.1), resulting
in a constant value of τloss = 0.01s−1. The diffusion tensor K is assumed to be isotropic and255

homogeneous over time and space. As the diffusion value K = 50m2 s−1 is a typical value to
model an unstable atmosphere (BEA Fisher et al., 1981), we use the value K = 10m2 s−1, which
corresponds to a moderately unstable atmosphere. A favorable habitat, used in the Tikhonov
regularization, see Sec. 3.1.1, is defined as a square with a width of 20m, overlapping the source
support S , see zone delimited by the dotted red line on Fig. 2.260

Ns = 35 synthetic sensors are randomly placed each at a different position in the landscapes
with a uniform distribution, see Fig. 2. Moreover, the accumulation time step is set to δt =

2s . Noise is subsequently added. We take mobs(ti , xj , yj) = max(0,m(c(st); ti , xj , yj) + ϵi ,j), in
order to avoid negative values, with c(st) the results of the direct model (1) computed from
the source term st and ϵi ,j ∼ N (0,σ2

i ,j) a Gaussian noise. Since pre-concentration uncertainties265

scale with pheromone density, we scale the standard deviation with the model observations:
σi ,j = 0.01m(c(st); ti , xj , yj).

To discretize the spatio-temporal domain, fixed space and time steps are used, resp. ∆x =

∆y = 0.5m and ∆t = 0.1s . This leads to a source term s(x , y , t) to infer with 1920000 degree
of freedom.270

Realistic set up: the FAW case. The FAW case is based on a real landscape in central France
(Adamczyk-Chauvat et al., 2024), see Fig. 3a for the computational domain (dashed lines). The
same homogeneous diffusion tensor (K = 10m2 s−1) as in the Toy case is used. The wind field
u⃗ is recovered from outputs of the French weather forecast model Arome, which is the regional
numerical weather forecast model fromMétéoFrance (Frenchweather forecast service, data and275

documentation available at https://donneespubliques.meteofrance.fr/?fond=produit&id_

produit=131&id_rubrique=51) corresponding to the actual wind field in area of interest at noon
the 2022/11/16. As the spatial sampling of the Arome model is about 0.01◦ (≈ 1.3km), see Fig.
3a, thewind field is projected on the computation grid by linear interpolation, and kept stationary
over the computation time window.280

As the loss coefficient τloss depends on the land cover, the land use heterogeneities in the
landscape are taken into account in the FAW case using land cover data, see Fig. 3b. The dif-
ferent values of τloss depending on the land cover as recapitulated in Tab. 1, see Sec. B.1 for
computations. Note that in the Toy case, the constant value 0.01 corresponds to bare soil.

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=51
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=51
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=51


Figure 2 – Map of the target source term st circular support (constant within the red
circle), the favorable habitat (square zone delimited by the red dotted line) and the sensor
location (colored markers) for the Toy test case.

land use sum. crop maize wint. cereals grassland forest bare soil urban road
τloss (s−1) 0.0097 0.011 0.0105 0.0099 0.0095 0.01 0.009 0.009

Table 1 – Loss coefficient τloss values depending on the land use. Sum. crop = Summer
crop, wint. cereals = winter cereals.

FAW has a specific pattern of pheromone emission. During the mating period, the FAW fe-285

males search for a suitable location and stay there until they lay their eggs. Each night, they emit a
sexual pheromone that attracts the males. Pheromone emission is stopped just at the beginning
of the mating process, so that at the population level, the pheromone emission exponentially
decreases while females meet a mating partner and stop emitting. This pattern is repeated ev-
ery night. We start the time window for pheromone recording three hours after nightfall, when290

emissions are at their peak (Tumlinson et al., 1986).

Recall that s = pq with p the density of insects and q the quantity of pheromone emitted per
time unit per insect. We use a constant emission rate per insect q = 2.7pg .s−1. The reference
density pFAWref of emitter insects is chosen to satisfy a realistic population dynamics model, see
later Sec. 3.7, and is defined as295

(11) pFAWref (t, x , y) = pFAW0 (x , y) exp

(

−
∫ t

0
γ(s)ds

)

with γ(t) themating rate function representing the proportion of female that encounter amale at
a given time and stop emitting (see Fig. 3c) and pFAW0 the initial density of females. In that regard,

t 7→ exp
(

− ∫ t0 γ(s)ds
)

is the function representing the proportion of females still available for

mating and that keep emitting at a given time. Initially, we suppose that approximately 60 females
are uniformly distributed within a circular domain of radius 10m. This corresponds to a constant300

initial density of p̄0 = 0.2m−2 within S = {(x , y) ∈ Ω | (x − xs)
2 + (y − ys)

2 < R2} a circular
support centred in (xs , ys) and of radius R = 10m, see the red circular domain on Fig. 3b:

(12) pFAW0 (x , y) = p̄01S(x , y).



(a) Wind field as obtained from the weather fore-
cast model, before interpolation on the computing grid
(length and color of the arrows normalized by the wind
speed). Nine vectors in total are available, at the center
of the figure, at the corners and in the cardinal direc-
tions.
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(b) Fragment of agricultural landscape, land cover and
sensor positions (see sec. 3.6 and fig 13).
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(c) FAW test case, mating rate γ(t) as in Eq. (13) (blue)
and total proportion of female still emitting pheromones
exp
(
−

∫ t

0
γ(s)ds

)
(red, see Eq. (11)) vs time t .

Figure 3 – Map of the of the computations domains (dashed lines, black for the total
domain and red for the domain of the inference) with the wind field computed by the
Arome model at a given time (left) and the division of agricultural parcels and soil occu-
pation (right) for the FAW case.

The FAW females usually emit when laying on plants favorable for the larva. In the FAW case
landscape, we assume that maize is the most favorable plant. Therefore, the support S is located
within a domain region covered by maize, see land cover in dark orange on Fig. 3b. Moreover,305

we assume that the mating rate function γ is a logistic function, see blue curve on Fig. 3c:

(13) γ(t) =
Kmat

1 + exp (−λ(t − τ))

where Kmat is the maximal mating rate, τ the midpoint time value and λ the logistic growth rate
(see Fig. 3c). Let us note that τ is related to the average time a male necessitates to reach a
female while tracking back the pheromone source. Based on biological expertise, τ is taken such
that 50% of the females have mated with a male within the 30 first minutes. Hence, pFAWref (t =310

30min, x , y) = 1
2p

FAW
0 (x , y). Using the mating maximal rate Kmat = 0.1 and a logistic growth rate

λ ≈ 8.3 × 10−3, it results that τ = 127.94min.



To begin with, 15 sensors are randomly dispatched with uniform distribution in the maize
field of interest, see the land cover in dark orange on Fig. 3b. Then, the 6 sensors that contribute
the less (6 last in the contribution order for the one-sensor criteria defined in Sec. 2.4.3) are315

randomly relocated inside the convex hull of the 9 remaining sensors. This relocation method is
detailed in the results in Sec. 3.6 and illustrated in Fig. 13.

Note that the computation domain is narrowed around the 300m long and 400m wide favor-
able zone of maize field to reduce computation time, see domain delimited by the red dashed
line on Fig. 3a. The accumulation time step is set to δt = 30min, in the order of reasonable320

pre-concentration time. Noise is subsequently added with the same noise model than in the Toy
case:mobs(ti , xj , yj) = max(0,m(c(st); ti , xj , yj)+ϵi ,j)with c(st) the results of the direct model (1)
computed from the source term st and ϵi ,j ∼ N (0,σ2

i ,j) a Gaussian noise with standard deviation
σi ,j = 0.05m(c(st); ti , xj , yj).

To discretized the spatio-temporal domain of this case, fixed space and time steps are used,325

resp.∆x = ∆y = 2m and∆t = 30s . This leads to a source term s(x , y , t) to infer with 10800000
degree of freedom.

2.4. Benchmarking criteria

Once the optimization algorithm is terminated, the optimum sa is compared against the target
st , that is used to generate the data, using the criteria presented below to evaluate the accuracy330

of the localization of the insects.

2.4.1. RMSE-type criteria. A first class of criteria is based on the Root x Mean Square Error
(RxMSE) between the target st and a value of s , that measures the accuracy of the data as-
similation process. The x indicates here that we average over the spatial dimension only. In this
study, the errors of interest are the quadratic error on the whole domain Ω and on Ωsupp , the335

support of the target st . We set the total RxMSE criteria by

(14) RxMSEtot(t; s) =

√

1

|Ω|

∫

Ω
(s(X , t) − st(X , t))2dX

and the support RMSE criteria by

(15) RxMSEsupp(t; s) =

√

1

|Ωsupp|

∫

Ωsupp

(s(X , t) − st(X , t))2dX .

While the error on the whole domain gives a global assessment of the accuracy of sa, by also
measuring false emissions estimated outside of the target support, the error on the target sup-
port enables to quantify the error made on the specific zone where the pheromone are emitted,340

and thus where the insects are located.

2.4.2. False discovery rate and miss rate. The presence of insects at a given time and point of the
domain is assessed when the quantity of pheromone emitted is above a given threshold ϵs . This
threshold depicts the minimal quantity of pheromone emitted by a single insect over the area of
a numerical mesh cell. According to this presence criteria, the subdomain where the insects are345

located given a source term is the superlevel set

(16) Ωsls(t; s, ϵs) = {(x , y) ∈ Ω | s(x , y , t) > ϵs}
This implies that the superlevel set Ωsls(t; sa, ϵs) (set in blue dashed lines on Fig. 4) is the sub-
domain where the insects are predicted to be present. On the other hand, the superlevel set
Ωsls(t; st , ϵs) (set in red dashed lines on Fig. 4) is the subdomain where the insects are truly
present.350



Figure 4 – Illustration of the predicted and true superlevel sets and the false absence
and presence predictions

These two sets will be compared using dissimilarity criteria in a same way as the Jaccard
similarity coefficient or the confusion matrix in supervised statistical learning, see e.g. (Stehman,
1997). The subdomain Ωfp(t; ϵs) = Ωsls(t; sa, ϵs) ∩ Ωsls(t; st , ϵs) corresponds to the subdomain
where the insects are wrongly predicted to be present (false presence prediction, set in red dot-
ted lines and blue dashed lines on Fig. 4) and Ωfa(t; ϵs) = Ωsls(t; sa, ϵs) ∩ Ωsls(t; st , ϵs) the subdo-355

main where the insects are wrongly predicted to be absent (false absence prediction, set in red
dashed lines and blue dotted lines on Fig. 4). Noting |Ω| the area of the set Ω, we then define
ρfa(t) the false absence prediction rate (or miss rate, i.e. the proportion of insect true presence
that is predicted as absence):

(17) ρfa(t) =
|Ωfa(t)|

|Ωsls(t; st , ϵs)|
=

|Ωfa(t)|
|Ωfa(t) ∪ Ωtp(t)|

and ρfp(t) the false presence prediction rate (or false discovery rate, i.e. the proportion of pre-360

dicted presence that is incorrect):

(18) ρfp(t) =
|Ωfp(t)|

|Ωsls(t; sa, ϵs)|
=

|Ωfp(t)|
|Ωfp(t) ∪ Ωtp(t)|

.

In a context where we aim to prevent and control the infestation, this miss rate must be kept
the smallest possible, or even 0. On the other hand, in a context of precision agriculture, the
false discovery rate will lead to useless application of pesticide. Thus, the objectif is to have the
smallest possible false discovery rate while keeping the miss rate close to 0. In the following, we365

use the threshold value ϵs = 0.065.

2.4.3. One-sensor adjoint state-based criteria. The purpose of this criteria is to assess how the
regularization strategies influence indirectly the contribution and importance of the sensors and
their data, and if some strategies require less sensors to achieve the inference with a similar
accuracy on sa.370

Let (sk)k∈N denotes the sequence of source terms given the trajectory taken by the opti-
mization algorithm in the control space. The gradient descent algorithm iterations can then be
expressed as ∀k > 0:

(19) sk+1 = sk − ηk∇s j(sk)

with (ηk)k∈N the sequence of step sizes. From this expression of one iteration, the optimum sa

can then be expressed as function of the sequence (sk)k∈N:375

(20) sa = s0 −
∑

k

ηk∇s j(sk)



Using the expression (7) of∇s j and the splitting of the adjoint state c∗ into the one-sensor adjoint
state c∗

i as in Eq. (9), the optimum sa can then be expressed as:

sa = s0 −
∑

k

ηk
(

∇s jreg (sk) − c∗(sk)
)

= s0 −
∑

k

(

ηk∇s jreg (sk)
)

+
∑

i

∑

k

(

ηkc
∗
i (sk)

)

= s0 −
∑

k

(

ηk∇s jreg (sk)
)

+
∑

i

c∗
i ,tot

where

(21) c∗
i ,tot(x , y , t) =

∑

k

ηkc
∗
i (sk ; x , y , t)

This illustrates that c∗
i ,tot enables to quantify the contribution of the i th sensor to the com-

putation of the optimal sa. The comparison of the regularization strategies with regard of the380

sensors contribution will be done by looking at ∥c∗
i ,tot∥L∞(Ω×[0,T ]), the maximal contribution of

the i th sensor, and the sensors will be ordered by decreasing ∥c∗
i ,tot∥L∞(Ω×[0,T ]), hereinafter re-

ferred to as the contribution order. This representation allows to compare the contribution of the
sensors with each other and to decipher if the maximal total contribution drops from a certain
rank in the contribution order, thus indicating that the sensors located upwards in the ranking385

may have lower, or even negligible, impact on the estimation of sa. Let us note that the quantity
c∗
i ,tot can be directly computed using a trajectory-integrated one-sensor adjoint model in eq. (69)
and does not require to compute c∗

i (sk) for each k separately, see more details in Sec. B.3.1.

3. Results

The core methodological improvement of this study is the Biology-Informed Data Assimila-390

tion (BI-DA) framework. It is the reason why we present it in the results and not in the material
and methods section. This framework is based on the classical data assimilation optimization
problem (3) but with in addition regularization terms that are informed with biological knowl-
edge of the insect. These BI-DA framework is tested in the two test cases defined in Sec. 2.3.2,
i.e. the Toy case, characterized by small spatio-temporal scales, homogeneous landscape, time-395

varying but space-uniform wind field and constant emission pattern of the emitting insects, and
the FAW case taking into account a real agricultural landscape, observed wind field and complex
emission pattern mimicking the behavior of the insect pest targetted in this study: the FAW.

We first present different biology-informed regularization terms in Sec. 3.1. In Sec. 3.2, the
pheromone propagation is illustrated in the Toy case, before computing a classical VDA without400

regularization in Sec. 3.3, to obtain an optimal pheromone emission sa of reference. In Sec. 3.4,
the BI-DA is extensively benchmarked and compared to regularization-free VDA in the Toy case.
Finally, BI-DA is used to track emission source in the FAW case. In Sec. 3.5, the pheromone
propagation is illustrated in this realistic setting. In Sec. 3.6, a classical VDA used as reference
is performed without regularization, raising the need for a better sensor placement. In Sec. 3.7,405

BI-DA is performed to infer the localization of the insects.

3.1. Biology-Informed DA: adding biological priors in pheromone emission inference

As mentioned in Sec. 2.2, regularization terms based on additional coarse estimation of the
control are often considered to improve the convexity of j (Kaltenbacher et al., 2008; Tarantola,
2005). In the classical VDA framework, the optimization problem (3) is strongly constrained by410

the pheromone propagation model (1): the pheromone distribution c is explicitly obtained from



the direct problem, given the source s . Regularization terms can be seen as additional weak con-
straints, i.e. constraints introduced in the minimization problem as penalties. Inference problems
that rely only on optimization problems weakly-constrained by a dynamical model are already
treated in VDA (Trémolet, 2007) and machine learning contexts (Raissi et al., 2019).415

We specifically introduce regularization terms based on biological models, and thus term the
resulting VDA problem as BI-DA. Let us assume that s satisfies a biological model that can be
written M(s) = σ, where σ is a known biological prior. Then, one can consider a regularization
term of the form

(22) jreg (s) = ∥M(s) − σ∥2L2
The regularization term is then designed to minimize the residual of the model M(s) = σ.420

The model’s operator M can be any kind of operator, including partial differential operator.
For instance, recall that the emission source can always be written s = qp as in Eq. (2), and thus,
the model M(s) = σ can be resulting from a population dynamics model on the insect density
p. In the VDA minimization problem (3), we work in a differentiable optimization framework.
Thus, the loss function j(s) must be differentiable, which implies that jreg (s) and the underlying425

operator s 7→ M(s) have to be differentiable as well. However, this framework can be extended
by working in a non-smooth and subdifferentiable optimization framework (Nesterov, 2018),
e.g. by using the proximal-gradient algorithm (Parikh et al., 2014). This allows us to consider
subdifferentiable jreg (s) and M, such as a LASSO regularization term, i.e. of the form jreg (s) =

∥M(s)− σ∥L1 or alike, see more details in Sec. 3.1.2. Recall from Eq. (5) that a weighted sums of430

multiple regularization terms can be considered in order to take into account multiple biological
models.

We now introduce several biology-informed regularization terms that can be used to regular-
ize the optimization problem (3). First, classical regularization terms will be introduced, such as
Tikhonov (a.k.a. ridge), LASSO and group-LASSO regularization. For these regularization terms,435

we will pay a specific attention to the biological information we can add through these terms.
Then, a population dynamic-informed jreg will be presented, in order to explicitlymodel biological
mechanisms.

3.1.1. Biology-based Tikhonov regularization term. The most classical jreg is the Tikhonov regular-
ization term (Kaltenbacher et al., 2008):440

(23) jreg ,T (s) = ∥s − sb∥2
C−1

with sb a background value of s and C the background error covariance operator. Classically, sb
is given by a prior estimate of the true state, e.g. based on additional data that are not accurate
enough and/or too sparse or based on a rough physical estimate , see e.g. (Bocquet, 2014). From
a biological point of view, a Biology-Informed Tikhonov jreg (M(s) = s and σ = sb) enables to
take into account prior knowledge on the insects life habits, for instance their preferred habitat445

and insect life cycle. In this case, the term sb describes the expected spatial distribution and
density of the insects with respect to the land use or the pheromone emission pattern.

3.1.2. LASSO-type regularization term and corresponding biological input. LASSO-type regulariza-
tion terms are often used to ensure sparsity and perform variable selection, see (Tibshirani, 1996).
In the VDA experiments based only on the data, see Secs. 3.3 and 3.6, some spurious sources are450

detected, including near several sensors even though they are far away from the target source.
This residual detection, particularly visible near final time (see Fig. 6), can be due to numerical er-
ror, to noise or to diffusive phenomena in the adjoint model. When computing the superlevel set



in eq. (16) for locating insects from the inferred quantity of pheromone emitted, these spurious
pheromone sources can lead to false presence prediction.455

LASSO regularization. In our context, we assume that the data are collected at the beginning of
the infestation, so that we can expect that only a few insects are present. Hence, in order to
select important local pheromones sources and to mitigate false presence predictions, a LASSO
penalty is considered:

(24) jreg ,LASSO(s) = ∥s∥1
Recall that the optimization problem (3) with this jreg is no longer differentiable. A proximal gradi-460

ent algorithm, namely the ISTA method, will be used to solve it, see more details in Annex B.3.3.
Note that the ISTA is a Iterative Soft-Threshold Algorithm, meaning in particular that at each
optimization iterations it thresholds any value under αreg ,LASSOη, where αreg ,LASSO is the regu-
larization weight of jreg ,LASSO and η is the descent step of the gradient-descent algorithm. Hence,
assuming that we have a prior knowledge of a detection threshold under which pheromone emis-465

sion can be discarded, a magnitude of αreg ,LASSO can be computed from η in order to shrink the
estimate of sa under this threshold at each optimization iterations.

Group-LASSO regularization. It is common that the insects do not move during the pheromone
emission time period. It is e.g. the case for FAW, see Sec. 2.3.2. Therefore, the total quantity
of pheromone emitted during this emission period can not be lower than the total amount of470

pheromone emitted by one insect on this time window. Conversely, if the total amount of emit-
ted pheromone is lower, it implies that these pheromone sources are spurious and can be dis-
carded. The following group-LASSO term is adapted to eliminate spatial positions with lowest
accumulated pheromone emission:

(25) jreg ,gLASSO(s) = ∥s∥L1(Ω;L2(0,T )) =

∫

Ω

(
∫ T

0
s(t, x , y)2dt

)1/2

dxdy

Similarly to the LASSO regularization, a proximal gradient algorithmwill be used andmore details475

are provided in B.3.3. For the group-LASSO regularization, this algorithm thresholds at each op-
timization iterations s(t, x , y) for all t if ∥s(·, x , y)∥L2(0,T ) is under αreg ,gLASSOη, where αreg ,gLASSO

is the regularization weight of jreg ,LASSO and η is the descent step of the gradient-descent algo-
rithm.

3.1.3. Population dynamic-informed regularization term. Population dynamics models that model480

the spatio-temporal evolution of the density of insects p can also be used to derive biological
models for the quantity of pheromone emitted s . These population dynamics models can be
written in a generic way as follows:

(26) ∂tp + ∇
(
∑

i

Fi (p)

)

−
∑

i

Ri (p) = 0

with Fi and Ri are resp. flux and reaction terms that model the behavior of the insect specie of
interest. Recall that s(x , y , t) = p(x , y , t)q(t) ⇔ p(x , y , t) = s(x ,y ,t)

q(t) with q(t) > 0 the quantity
of pheromone emitted per insect, which is assumed to be a biological knowledge. A population
dynamics PDE equation of the form (26) can be expressed as the following PDE equation, in
which s is the state variable:

1

q
∂ts − ∂tq

q2
s + ∇

(
∑

i

Fi (s)

)

+
∑

i

Ri (s) = 0



with Fi (p = s
q
) = Fi (s) and Ri (p = s

q
) = Ri (s). From this PDE equation, the population

dynamics-informed regularization term is the following:485

(27) jreg ,PD(s) = αreg ,PD∥∂ts − ∂tq

q
s + q∇

(
∑

i

Fi (s)

)

− q
∑

i

Ri (s)∥2L2

We note that this residual uses the PDE equation expressed in strong form. We take into con-
sideration no boundary effects, but if needed, boundary conditions could be added to the mini-
mization problem. For regular Fi and Ri operators, this residual lies in L2(0,T ; Ω).

Several potential terms Fi and Ri (and the associated Fi and Ri ) are possible and have dif-
ferent biological meaning. The flux terms Fi can be used to model the motion of the insects490

in a random direction or in a specific direction (e.g. toward the preferred habitat). The reaction
terms can be used to model birth-death processes or the fact that certain insects stop emit-
ting pheromones. An extensive list of additional possible terms is added in the supplementary
material Sec. B.2, including advection, diffusion, quorum sensing, Keller-Segel term to model
pheromone sensing, and additional reaction terms such as linear birth-death process, logistic495

growth, Allee effect, or non-local terms. Furthermore, the corresponding gradients are explicitly
computed in the supplementary Sec. B.3.2, so that the reader has all the necessary elements to
implement the population dynamic-informed penalty fitting with the behavior of other insects
of interest.

For instance, the females of themodel insect thatwe consider, FAW, start emitting pheromones500

once found an emission site. During the emission time lapse, the insect does not move in order
to efficiently attract a mating partner and stops emitting when it founds a mating partner and
the mating starts. Furthermore, a proportion of female encounter a male at a given time follow-
ing a mating rate function, see Sec. 2.3.2. Thus, the dynamics of the population of the insects
emitting pheromone is modelled using only a simple linear birth-death process:505

(28) Rbd(p; x , y , t) = −γ(x , y , t)p(x , y , t) ⇔ Rbd(s; x , y , t) = −γ(x , y , t)

q(t)
s(x , y , t)

with γ [s−1] the birth (if γ > 0) or death (if γ < 0) rate. In general manners, this term models a
linear birth-death process where a proportion γ(t) of the population dies or reproduces at each
time t .

3.1.4. Choices of hyperparameter and hot start. Asmentioned previously, wewill use the different
regularization terms, which includes using them simultaneously. In this regard, recall that the510

overall regularization term can be expressed as the weighted sum of BI regularization terms
(5) and L is the list of the regularization terms that we take into account. In the present study,
we set L = {′T ′,′ LASSO ′,′ gLASSO ′,′ PD ′} where T stands for Tikhonov, PD for population
dynamics and gLASSO for group-LASSO. In the following, several combination of jreg ,i will be
tested and analysed, starting from only one jreg ,i (αj = 0 ∀j ̸= i ) and up to three jreg ,i . The515

composite cases ′T +LASSO , ′T +PD ′ nd ′LASSO+PD ′ designate the cases when, additionally
to αgLASSO = 0, we have respectively αPD = 0, αLASSO = 0 and αT = 0. Finally, the case
′T + LASSO + PD ′ is when only αgLASSO = 0 and is designated as ′all reg ′ in the Toy case.
Similarly, the case ′T + gLASS + PD ′ is when only αLASSO = 0 and is designated as ′all reg ′

in the FAW case. Moreover, in the following, ′no reg ′ refers to the case without regularization520

terms (αi = 0 ∀i ∈ L).
The values of αi are chosen such that they are the largest possible while satisfying the Moro-

zov’s discrepancy principle (see Sec. 2.2.4) in a reasonable computation time. In the following, in
order to facilitate the solving of optimization problem, the regularization terms are progressively



added. This process is also known as a hot start. As a first step, we optimize without regular-525

ization. Then, we add one by one the regularization terms initiating the optimization with the
optimum obtained previously. Similarly, in order to reach the highest values possible, the weight
coefficients αi are increased step by step, restarting each time with hot start and repeating until
the Morozov’s discrepancy principle is no longer satisfied.

3.2. Numerical illustration of pheromone propagation in the Toy case530

Figure 5 – Map of the concentration in pheromone c(st) (pg .m−2) computed from the
depth-integrated CTM model (1) with the reference source term st for the Toy case pre-
sented in Sec. 2.3.2 at several times; in addition iso-lines of c are indicated with black
dashed lines, and the reference source st support is displayed in white at final time.

We first present numerical results for the pheromone propagation model (1) in the Toy case,
as set up in Sec. 2.3.2, in order to illustrate the pheromone plumes computed by the model
(see Fig. 5). As expected, the convection is dominant: the pheromones mainly propagate in the
direction of the wind, with little additional diffusive effect. The pheromone crosses the domain
within a couple of seconds during which a front propagates until reaching a quasi stationary535

plume. As expected, time variations of the wind field, that is north-east at the beginning and
north at the end, induces deformation of the plume.

3.3. Classical VDA without regularization used as reference in the Toy case

We now illustrate the inference of emission sources in the Toy case without regularization
term in Fig. 6. We can observe that the optimum sa exhibits positive values, corresponding to540

pheromone emission sources, in areas spreading out upwind of the sensor locations (see Fig. 2
for sensor locations. Some sensor locations are also visible in Fig. 6, indicated by spots). This de-
tection is referred to as the retro-plume. Indeed, the optimum sa is computed by descending the
gradient of the cost function (7), which is evaluated using the adjoint model (6). This equation
describes the retro-propagation with diffusion of the discrepancy between predictions and ob-545

servations m(c(s))−mobs from final time t = T to initial time t = 0. Consequently, the gradient
descent algorithm mostly adjusts the initial prior s0 in diffuse areas (attributable to the diffusion
term in the adjoint model) upwind (attributable to the advection term) of the sensor locations
(attributable to the source term).



Figure 6 – Classical VDA without regularization for the Toy case. The optimal quantity
of pheromone emitted sa is obtained by inference without regularization term for the Toy
case at T = 0s (left panel) and T = 20s (right panel). The support of the target quantity
of emitted pheromone st (see Fig. 2) is delimited by the dashed lines. Some spurious
detection spots can be seen, as sources (light dot) or sinks (dark blue dots) in the Toy
case at T = 20s .

Another consequence of the retro-propagation feature can be seen in Fig. 6: if at initial time,550

the estimated source sa covers a large area, at final time t = 20s , the retro-plume is mostly
confined into a small vicinity of several active sensors. Indeed, near final time, as the retro-plume
is only advected for a little time interval, the propagation of the adjoint state is mostly due to
diffusion.

We also note that the reconstructed source sa exhibits negative non-physical values, that555

can be identified by dark blue dots near some sensors (see e.g. sensor locations X = (17, 18.5)

and X = (14.5, 17.0) at time t = 20s , in Fig. 6, right panel). This phenomena is not due to
numerical errors: it is a feature that directly comes from the noise in the data. The VDA intends
to reproduce the data, including the noise even when the noise is not consistent with physical
mechanisms. Therefore, during the retro-propagation of the noisy data, the optimal source sa560

includes pheromone sinks, i.e. negative values, in order to approximate the noisy target, even if
it is not physical. If needed, the optimization problem could be solved under positive constraints
in order to avoid these drawbacks.

3.4. Benchmark of the different regularization terms for BI-DA in the Toy case

We now aim to benchmark the different regularization terms introduced in Sec. 3.1 for BI-565

DA. We use the same supervised framework as in Sec. 3.3: a target source term st is used to
produced the synthetic data, and are compared to the estimated source sa. Recall that st = qp

toy
ref

with q the constant emission rate, and p
toy
ref the pest insect density, which remains constant over

time on a circular support in the Toy case, see Sec. 2.3.2. This lead to the following population



dynamics model:570

(29) ∂tp
toy
ref (t, x , y) = 0

which corresponds to the population dynamic-informed regularization term

(30) j
toy
reg ,PD(s) = ∥∂ts∥2L2 .

We also recall that a favorable zone for the emitting insect is defined in a square Ωsquare that
includes the support ptoyref , see Fig. 2. Moreover, from the typical density of insects and the per

capita pheromone emission rate given by the literature, we compute a surface emission rate
s
toy
b = 0.54pg .s−1m−2 that is used as biology-informed background estimate575

s
toy
b (t, x , y) = s

toy
b 1Ωsquare

(x , y),

that will be taken into consideration through the Tikhonov regularization term (23), see Sec.
3.1.1.

We include in the benchmark the Tikhonov (T), LASSO, Population Dynamic (PD) regulariza-
tion, and all combination of them, in order to understand how each regularization term operates
and impacts the BI-DA. The optimum sa is then compared with the target source st using the580

different criteria introduced in Sec. 2.4, i.e. total and support RMSE criteria (see resp. Eqs. (14)
and (15)), miss and false discovery rates (see resp. Eqs. (17) and (18)), and the one-sensor adjoint
state-based criteria (see Eq. (21)).

3.4.1. Visual comparison of estimated pheromone emissions sa. The estimated sources sa are dis-
played for each regularization term, including composite terms, in Fig. 7 at initial (t = 0s) and final585

times (t = 20s), for one single (top panel) and composite (bottom panel) regularization terms (see
Sec. 3.1), together with the case without regularization (′no reg ′) taken as reference inference
experiment.

At t = 0s , only slight discrepancies can be observed between the different regularization
terms, either in single (top panel of Fig. 7) or composite ones (bottom panel), except for Tikhonov590

regularization (′T ′) that over predicts source emission on the favorable zone. Note that with
LASSO regularization (′LASSO ′), the retro-plume is less diffuse compared to the reference (′no reg ′)
case since small values have been thresholded by the regularization.

At final time t = 20s , when fewer data are available for estimation, single regularization
terms do not significantly improve the estimate of sa made in the reference case (′no reg ′), except595

with the population dynamic-informed regularization term (′PD ′) which substantially increases
prediction accuracy. In composite regularization terms, involving population dynamics is also key
to improve predictions (see ′PD + LASSO ′, ′PD + T ′ and ′all reg ′ compared to ′T + LASSO ).
Visually, coupling population dynamics with LASSO (′PD + LASSO ′) slightly improves the target
estimate compared to population dynamics alone, while coupling it with a Tikhonov term seems600

to add false positive predictions outside the target in the favorable zone.

In conclusion, adding prior information on population behavior through the population-dy-
namics term seems to improve the reconstruction of target emissions st , but it is not clear if
coupling it with other regularization terms is beneficial or not: quantitative assessment must be
conducted.605

3.4.2. RMSE criteria. In order to have a more quantitative assessment of the discrepancies be-
tween sa and st in the different cases (single and composite regularization terms), we intro-
duced in Sec. 2.4.1 RxMSEtot (14), the error computed on the whole computational domain,
and RxMSEsupp (15), the error computed on the support of the target source only. The latter



Figure 7 –Optimal sources estimated with different regularization terms.Optimal quan-
tity of pheromone emitted sa obtained by inference with several regularization strategies
for the Toy case. Upper panel, from left to right: with no regularization term (no reg), with
the population dynamic-informed regularization term (30) (PD), with the LASSO regular-
ization term (24) (LASSO) andwith the Tikhonov regularization term (T) (23). Lower panel,
from left to right: with combination of population dynamic-informed and LASSO regular-
ization terms (PD+LASSO), with a combination of Tikhonov and LASSO regularization
terms (T+LASSO), with combination of population dynamic-informed and Tikhonov reg-
ularization terms (PD+T) and a combination of all three population dynamic-informed,
LASSO and Tikhonov regularization terms (all reg). In both panels, the optimal sources
are indicated at t = 0.0s (upper row) and t = 19.9s (lower row).



enables to assess the inference accuracy on the specific zone where the insects are located. We610

display in Fig. 8 the time evolution of RxMSEtot (top panel) and RxMSEsupp (bottom panel) for
the different (single and composite) regularization terms in comparison with the reference case
without regularization (′no reg ′).

We first note that all the regularization terms provide sensibly equal estimation error inside
the target support in a large part of the time domain, until t ≈ 17.5s (see the bottom panel of615

Fig. 8), while estimation error on the whole domain or near final time is more widespread. This
indicates that the main differences come from reconstruction outside the target support and at
the end of the time window, when data are lacking.

Again, we note that adding population dynamics to the regularization maintains low error
values at final time (see ′PD ′, ′PD + LASSO ′, ′PD + T ′, ′all reg ′, compared to the other terms,620

bottom and top panels), as the population dynamicmodel enables to propagate information from
the initial time to the final time. However, coupling it with LASSO and Tikhonov reduces the error
both inside the target and on the whole domain (see ′all reg ′, red curves, Fig. 8). Compared to
′PD ′ term alone (orange curves), this enhancement could come from complementary effects and
efficient interactions between the different regularization.625

In conclusion, coupling all the regularization terms outperforms all the other combinations of
regularization terms for prediction accuracy all along the time window, both on the target and
the whole domain. Population dynamics is mandatory to preserve low error levels near final time,
when data are lacking.

3.4.3. Presence prediction, false discovery and miss rates. In a practical view point, the important630

information for cultural practice is not the distribution of pheromone emission (which reflects
quantitative distribution of insect population), but the presence of the pests that we aim to
control. Therefore, we introduced in Sec. 2.4.1 a prediction of the insects presence derived from
the pheromone emission map and based on the super level set of Eq. (16) of minimal emission
value, see Fig. 4.635

We represent in the upper panel of Fig. 9 the presencemaps of insects computedwith the dif-
ferent regularization terms and given by the target st , at three different times (t = 0.0s , t = 10.0s

and t = 20.0s). Pests are predicted as present inside the delineated color-coded zones. As already
anticipated in the visual comparison (see Sec. 3.4.1), the Tikhonov regularization overestimates
the presence of pests, while the ′LASSO ′, ′T +LASSO and ′no reg ′ strongly underestimate pest640

presence at final time.

Cases involving population dynamics regularization (′PD ′, ′PD + LASSO ′, ′PD + T ′, ′all reg ′)
keep covering the target zone all along the time domain by propagating with the population
dynamics regularization the presence predicted at initial time. We can however notice a slight
overestimation at final time with the case combining all three regularizations (′all reg ′), probably645

due to the Tikhonov term as the boundary of the square favorable zone are slightly visible (Fig.
9, upper panel, T = 20.0s , red line). We can also notice a slight underestimation at the final time
with the case ′PD + LASSO ′, probably due to the effect of the LASSO regularization. We also
observe spurious presence predictions with the single population dynamics regularization, the
single LASSO regularization and the combination of both (Fig. 9, upper panel, resp. ′PD ′, ′LASSO ′

650

and ′PD + LASSO ′) far from the target, likely because of the noise.

To get a better view of the amount of insects that are detected and missed during the time
window, we use false discovery rate ρfp (18), i.e. the proportion of area where the insects are
predicted to be present but are actually absent, and the miss rate ρfa (17), i.e. the proportion of



Figure 8 – Evolution of total and support RMSE of sa against st . Time evolution of the
root space-mean square errors between the optimum sa obtained by inference with sev-
eral regularization strategies and the target st , on the whole domain (RxMSEtot , Eq. (14),
upper panel) and on the target support ( RxMSEsupp , Eq. (15), lower panel) in the Toy
case: with no regularization term (no reg, blue), with the population dynamic-informed
regularization term (30) (PD, orange), with the LASSO regularization term (24) (LASSO,
pink), with the group LASSO regularization term (25) (group LASSO, yellow), with the
Tikhonov regularization term (23) (T, green), with combination of population dynamic-
informed and LASSO regularization terms (PD+LASSO, brown), with a combination of
Tikhonov and LASSO regularization terms (T+LASSO, purple), with combination of popu-
lation dynamic-informed and Tikhonov regularization terms (PD+T, grey) and a combina-
tion of all three population dynamic-informed, LASSO and Tikhonov regularization terms
(all reg, red).

area where the insects are actually present but the prediction is missed.We recall that the objec-655

tive here is to reduce the false discovery rate, equivalent in our context to a useless application
of pesticide in the corresponding zone, while keeping the miss rate as small as possible, or even
null, to control the infestation.

Miss rates ρfa are comparable for all regularization at the beginning of the simulation, but
show a strong miss rate increase at final times for penalties that do not involve ′PD ′ or ′T ′ (Fig.660

9, lower panel, ′no reg ′ and ′LASSO ′, respectively blue and pink plain curves).When the Tikhonov
regularization is involved, the miss rate value is low, but to the price of high values of false dis-
covery rate (′T ′, ′T+LASSO and ′PD+T ′, resp. green, purple abd grey plain and dashed curves).
Adding the population dynamics term, the miss rate is controlled all along the time course of the
simulation (Fig. 9, lower panel, ′all reg ′, ′PD ′, ′PD + LASSO ′, ′PD + T ′, respectively red, orange,665

brown and gray plain curves). The combination of all three regularizations (′all reg ′, red curves)
seems to be a good trade-off, the miss and false discovery rates are very stable, ρfa remains zero
on the whole time window while ρfp is among the smallest one on the main part of the time
window. With this combination, the three terms interact in an efficient way: the LASSO term
seems to keep ρfp small, the Tikhonov term reduces the ρfa while the population dynamics term670

mitigates the rates evolution by propagating information from the initial time to the end of the
time domain, when the data are scarce.



Figure 9 – Presence prediction and time evolution of false discovery and miss rates.
Prediction of insects presence with several regularization strategies: with no regulariza-
tion term (no reg, blue), with the population dynamic-informed regularization term (30)
(PD, orange), with the LASSO regularization term (24) (LASSO, pink), with the Tikhonov
regularization term (T, green), with combination of population dynamic-informed and
LASSO regularization terms (PD+LASSO, brown), with a combination of Tikhonov and
LASSO regularization terms (T+LASSO, purple), with combination of population dynamic-
informed and Tikhonov regularization terms (PD+T, grey) and a combination of all three
population dynamic-informed, LASSO and Tikhonov regularization terms (all reg, red).
Top panel: map of presence prediction at three different time. The presence is obtained
from the reconstructed source sa by computing a level set with Eq. (16). The true pres-
ence (i.e. the target support) is indicated in black. Lower panel. Time evolution of the
miss rate ρfa (solid lines), see Eq. (17), and false discovery rate ρfp (dashed lines), Eq. (18).



In conclusion, ′PD ′ term is very interesting for controling the miss rate on the whole time
window and can be combined to ′T ′ term for enhanced reduction of ρfa, while coupling them
with ′LASSO ′ reduces the false discovery rate.675

3.4.4. Estimating active sensors with the one-sensor adjoint state criteria. The visual comparison of
optimal pheromone emission sa (see Sec. 3.4.1) indicates that sensors near the emission source
seem to have greater impact on the retro-plume than sensors located further away. More gen-
erally, the number of sensors needed for an accurate prediction is an hyperparameter of the
experimental design that could be evaluated. In order to obtain a proxy of this number, we de-680

veloped a metric enabling to detect and number sensors that most influence the optimization
process. To this end, we introduced in Sec. 2.4.3 the maximal total contribution ∥c∗

i ,tot∥∞, which
is the total contribution of the data obtained with the i th sensor to the decrease of the cost func-
tion along the optimization algorithm. This metric enables to understand how a specific sensor
impacts the estimation of sa, and to rank the sensors accordingly for each regularizations, see Fig.685

10. It allows in particular to understand if a regularization is able to supplement or amplify the
information collected by the sensors. Note that the sensors are not involved in the regularization
terms, so that the impact of the BI-DA regularization terms on ∥c∗

i ,tot∥∞ is indirect: the regular-
ization changes the trajectory taken by the optimization algorithm in the control space, hence
modifying the points where the one-sensor adjoint state c∗

i is evaluated along the optimization690

path.

We can observe that in the reference case (Fig. 10, ′no reg ′, blue line), the 7 first sensors are
particularly impactful. Then, a plateau value is attained until the 32st sensor, where a drop is ob-
served, indicating that the remaining sensors do no contribute significantly to the estimate of sa.
With the Tikhonov regularization, the contribution of the sensors located in the favorable zone695

is amplified, increasing the impact of the first sensors compared to ′no reg ′.In comparison, the
population dynamics regularization (Fig. 10, orange line) concentrates most of the information in
the 3 first sensors: it enhances their contribution while the remaining sensors reach the plateau
value. The combination of ′PD ′ and ′T ′ (grey line) shows a similar pattern than Tikhonov. Con-
versely, the ′LASSO ′ regularization, and all composite penalties containing ′LASSO ′ (Fig. 10, pink,700

brown, purple and red lines) tend to amplify the contribution of all the sensors and mitigates the
drops of contribution at the beginning and the end of the contribution order.

In conclusion, by providing prior information, population dynamics and Tikhonov regulariza-
tions concentrate the information needed for inference in a limited number of sensors while
the LASSO term make use of all the available sensors during the estimation process. When the705

three regularizations are combined, sensor contribution is distributed among the whole sensor
network, like in the ′LASSO ′ case. Hence, ′PD ′ or ′T ′ regularizations could be used with a re-
duced number of sensors, while any additional sensor will be leveraged by the ′LASSO ′ penalty
term for thresholding.

3.5. Numerical illustration of pheromone propagation in the FAW case710

The direct model (1) is now computed on the FAW case, as described in Sec. 2.3.2. The FAW
case strongly differs from the Toy case as it relies on a realistic landscape, with real application
time and space scales, taking into account a pest, the FAW, harbouring a characteristic emission
pattern, see Sec. 2.3.2 for details. Namely, only the females emit pheromones to attract males,
but stop emitting at the start of mating. The emission model hence describes the population715

dynamics of female and male pairing.



Figure 10 – Ranking sensor contribution in BI-DA.Maximal total contribution ∥c∗

i ,tot∥∞

vs sensor rank when sorted by contribution order for several regularization strategies
in the Toy case: with no regularization (′no reg ′, blue), population dynamic-informed
(′PD ′, orange), LASSO (′LASSO ′, pink), Tikhonov (′T ′, green), combination of population
dynamic-informed and LASSO (′PD + LASSO ′, brown), combination of Tikhonov and
LASSO (′T+LASSO , purple), combination of population dynamic-informed andTikhonov
(′PD+T ′, grey) and a combination of all three population dynamic-informed, LASSO and
Tikhonov regularization terms (′all reg ′, red). The quantity ∥c∗

i ,tot∥∞ indicates themaximal
(with respect to time and space) total contribution of sensor i all along the optimization
path.

Figure 11 – Map of the concentration in pheromone c(st) (pg .m−2) computed from the
depth-integrated CTM model (1) with the reference source term st for the FAW case
presented in Sec. 2.3.2, in logarithmic scale and at several times. In addition iso-lines of c
are indicated with black dashed lines. Furthermore,the agricultural parcels are displayed
with grey dashed lines together with the reference source st support in white at T =
110.5min (lower right panel).



Direct model outputs are displayed in Fig. 11. As in the Toy case, convection is also largely
predominant in the FAW case: the pheromones are also transported along the wind field, with
little additional diffusive effect. Note that the wind field is taken from real weather broadcasting
data. The pheromones spread across the domain within a couple of minutes until reaching a720

quasi-steady state plumewithin about tenminutes. After that, the decrease in time of the source
s which reflects the emission pattern of FAW that stops releasing pheromones at the start of
mating (see Fig. 3c and Sec. 2.3.2) implies that the concentration c decreases everywhere until
t ≈ 110min. Finally, s becomes negligible and c does not variate significantly any longer. The
landscape composition (see the grey dashed lines on the bottom right panel of Fig. 11), which is725

taken into account through the loss rate τloss , does not seem to influence significantly c .

3.6. Classical VDA and sensor positioning improvement in the FAW case

A first classical VDA without any regularization term is first conducted in the FAW case
with sensors randomly dispatched in the field of interest, see left panel in Fig. 12. We high-
light that this estimation problem is by far more difficult to solve than the Toy case for several730

reasons: first, there is a change in the spatio-temporal scales by one order of magnitude (from
tens of meters and seconds in the Toy case to hundreds of meters and hours in the FAW case);
next, the pheromone emission pattern mimics the biological behavior of the FAW and is no
longer stationary like in the Toy case; finally, the sensor density is much higher in the Toy case
(∼ 10−2 sensor/m2) than in the FAW case (∼ 10−4 sensor/m2). In this context, classical VDA735

fails to detect the position of the emitting insects (left panel in Fig. 12). The VDA algorithm does
not sufficiently retro-propagate the discrepancies between data and predictions: during the op-
timization, the VDA could be stuck in a flat zone of the objective function due to insufficient
signal of the sensors.

To partially counterbalance this effect, we repositioned several sensors by leveraging the one-740

sensor adjoint state-based criteria (see Sec. 2.4.3) for the classical VDA. Namely, we computed
c∗
i ,tot in eq. (21) resulting from this first VDA without regularization, and selected the 2/5 of
the sensors with the lowest contribution to the inference of s . These sensors were randomly
repositioned within the convex envelop of the 3/5 sensors that were kept fixed, with uniform
distribution (see top right panel of Fig. 13). We highlight the fact that no knowledge of the actual745

position of the target pheromone emission (i.e. of the emitting insects) has been used during re-
positioning, but only a criteria derived from the signal received by the sensors: in that sense, the
repositioning method is unsupervised. On the top right panel of Fig. 13, we can observe that
the sensors that have been repositioned were those located far or upwind from the targeted
emitting insects, indicating that the criteria c∗

i ,tot is efficient in selecting sensors that would have750

been a priori identified as potentially uninformative in a supervised context where the target is
known.

After sensor repositioning, the reconstructed sa by classical VDA now overlaps the target
position at T = 0min, see right panel of Fig. 12. Furthermore, the VDA without regularization
now enables to detect the insects in most of the target st support at initial time (blue curves755

on top left panel of Fig. 13), unlike before relocation where no insects were correctly located
(green curves). These observations were reflected in the miss and false discovery curves, that
were equal to 1 before repositioning, and dropped to about 0.2 and 0.6 respectively after sensor
displacement (13 lower panel).

We note that, at T = 30min, insects presence prediction vanishes (see Fig. 13 upper panel),760

and the miss and false discovery rates go up to 1, indicating inoperative presence prediction (see



Figure 12 – VDA without regularization for the FAW case. The optimal quantity of
pheromones emitted sa is obtained by inference without regularization term for the FAW
case at T = 0min (upper panels) and T = 30min (lower panels). The support of the target
quantity of emitted pheromone st (see Fig. 3b) is delimited by the dashed lines. The left
panel represents the source reconstruction with the initial random sensor distribution
(uniform law over the maize field), whereas the right panel represents the same estima-
tion after sensor re-positioning (see Sec. 3.6)

Fig. 13). This feature is completely different than the drop of presence prediction accuracy ob-
served at final time in the Toy case (see Sec. 3.4 and Fig. 9), that was inherent to boundary effects
near final time and due to the retro-propagation feature of the adjoint model. Here, the collapse
of discovery accuracy comes from the emission pattern of the FAW and from the accumulation765

time window of sensors rather than from a limitation of the data assimilation method.

3.7. Pheromone emission inference and pest localization with BI-DA in the FAW case

Wenow test theBI-DA framework in the FAWcase.Wefirst characterize the biology-informed
regularization terms and benchmark them in this realistic framework.



Figure 13 – Presence prediction and time evolution of false discovery and miss rates
in the FAW case before and after sensor repositioning. The prediction of insects pres-
ence is obtained by classical VDA without regularization before and after sensors repo-
sitioning. Before repositioning, the sensors have been randomly dispatched in the maize
field. After computation of c∗

i ,tot , the two-fifth of the sensors with lower contribution
to the source reconstruction were randomly re-allocated in the convex envelop of the
three-fifth of the sensors with higher contribution. Upper panel: presence predictions at
T = 0min and T = 30min before (green line) and after (blue line) sensor repositioning.
The position of the sensors before and after relocation is indicated in the right figure.
The presence is obtained from the reconstructed source sa by computing a level set with
Eq. (16) (see Sec. 2.4.2). The true presence (i.e. the target support) is indicated in black.
Lower panel. Time evolution of the miss rate ρfa (solid lines), see Eq. (17), and false discov-
ery rate ρfp (dashed lines), in eq. (18).



3.7.1. Biological priors in the FAW case. First, we define the population dynamics regularization770

term, that must reflect the emission pattern of the FAW. Let us note pFAWref (t, x , y) the proportion
of females that have not mated yet, and therefore keep emitting pheromones. The dynamics of
the pFAWref population is the following:

(31) ∂tp
FAW
ref (t, x , y) = −γ(t)pFAWref (t, x , y)

with γ the mating rate at a given time that is represented by the logistic function (13). Let us
note that pFAWref defined in eq. (11) is an analytic solution of the population dynamics model (31).775

Thus, in the FAW case, the following population dynamic-informed regularization term will be
considered:

(32) jFAWreg ,PD(s) = ∥∂ts + γs∥2L2
As mentioned in Sec. 2.3.2, the FAW females usually emit pheromone on plants favorable for

the larvae, which in this case is assumed to be maize. However, maize covers most of the domain
considered and so, it does not provide relevant information. From the biological knowledge of780

the insects, one can deduce an expected density of insects and a quantity of pheromone emitted
per female insect, and thus a local expected value of pheromone emission sFAWb,loc . Without any
additional information, this value will be used on the whole domain at the initial time. This leads
to the following Tikhonov regularization:

(33) sFAWb (x , y) = sFAWb,loc so that jFAWreg ,T (s) = ∥s(t = 0) − sFAWb ∥2L2(Ω).

Finally, we note that the emission pattern of FAW is ought to be particularly impactful on the785

classical LASSO term. The soft-threshold will preponderantly mitigate the source reconstruction
when the emission is low, accelerating miss rate at the end of the simulation when the number of
emitting females decreases. Conversely, we can expect that the LASSO penalty will not filter out
spurious reconstructions at the beginning of the simulation when levels of emitted pheromones
are still high since these spurious zones could represent higher quantities than the shrinking790

threshold. To counterbalance these effects, we decided to switch the LASSO penalty for a group-
LASSO penalty by filtering out spatial areas that received a total amount of pheromones, during
the whole time domain, under the shrinking threshold (see eq. (25)), so that

jFAWreg ,gLASSO(s) =

∫

Ω

(
∫ T

0
s(t, x , y)2

)1/2

dxdy .

A short comparison of LASSO and group-LASSO on the Toy case is made in the supplementary
Sec. B.4.795

3.7.2. Visual comparison of estimated pheromone emissions sa. We display the map of the re-
constructed pheromone emission sa obtained by BI-DA in fig. 14 for different regularization
terms, namely population dynamic-informed (’PD ’), group-LASSO, a combination of Tikhonov
and group-LASSO (′T + group LASSO ′), and a combination of all three terms (′all reg ′), that are
compared with the reference case without regularization term (′no reg ′).800

We can observe that sa obtained with the population dynamics regularization (top middle
panel on Fig. 14) slightly enhances the one obtained in the reference case. The group LASSO
regularization (top right panel on Fig. 14) thresholds pheromone emissions at location where
the total emission over time is too small. The combination of ′T + group LASSO ′ regularizations
(bottom left panel on Fig. 14) enables to reconstruct emissions in a large area, since the Tikhonov805

regularization pulls the emissions on thewhole domain toward the righ order ofmagnitude, while
the group-LASSO regularization counterbalances that by filtering out emission in areas with low



Figure 14 – Optimal quantity of pheromone emitted sa obtained by inference with sev-
eral regularization strategies for the FAW case. Upper panel, from left to right: no regu-
larization term (no reg), population dynamic-informed (PD), group-LASSO. Lower panel,
from left to right: combination of Tikhonov and group-LASSO (T+group LASSO), combi-
nation of all three population dynamic-informed, group-LASSO and Tikhonov regulariza-
tion terms (all reg).

total emission. Finally, the combination of the three regularizations (bottom middle panel on
Fig. 14) proposes a mix between the population dynamics regularization and the combination of
group-LASSO and Tikhonov regularizations.810

3.7.3. RMSE criteria between the optimum sa and the target st . TheRMSEtot andRMSEsupp curves
show comparable error magnitude and trends for the different regularization terms.

The ′group LASSO ′ and ′T + group LASSO ′ curves (pink and purple curves, Fig. 15), like the
′no reg ′ case (blue curve), present bumps around t = 30min and t = 60min, due to the effect of
the pre-concentration window in the observation operator in eq. (10). When adding the popula-815

tion dynamics regularization, this pattern is smoothed out, like in ′PD ′ (orange) and ′all reg ′ (red)
curves. The ′T +group LASSO ′ curve of RMSEsupp present a bump at t = 0s due to the Tikhonov
regularization term, that is also smoothed on the curve of the ′all reg ′ case.



Figure 15 – Root space-mean square errors between the optimum sa and st for several
regularization strategies. We display the RxMSEtot introduced in Eq. (14) (upper panel)
and the RxMSEsupp introduced in Eq. (15) (lower panel), versus t for the FAW case: with
no regularization term (no reg, blue), with the population dynamic-informed regulariza-
tion term (32) (PD, orange), with the group-LASSO regularization term (25) (pink), with
the Tikhonov regularization term and group-LASSO (T+group LASSO, brown) and with a
combination of all three population dynamic-informed, group-LASSO and Tikhonov reg-
ularization terms (all reg, red).

Hence, the different regularization terms have low impact on the overall error, but the prior
knowledge included by the population dynamics term filters out discontinuities in the observa-820

tion operator due to pre-concentration.

3.7.4. Prediction of insect presence. We now focus on insects presence predictions provided by
the different regularization terms together with the corresponding miss rate ρfa and false discov-
ery rate ρfp (respectively upper and lower panels of Fig. 16). Without any regularization (′no reg ′,
blue curve, Fig. 16), false discovery and miss rates stay stable until t = 30min, when pheromone825

emission vanishes. As expected, adding ′group LASSO ′, with or without Tikhonov (pink and pur-
ple curves), reduces false discoveries. Meanwhile, ′T + group LASSO ′ regularization increases
the miss rate while ′group LASSO ′ alone induces a slight reduction. Adding population dynam-
ics regularization (orange curves) allows to reduce target misses compared to ’no reg ’, especially
during the first 20 minutes, to the price of a higher ρfp . As observed previously on the RMSE830

criteria, the population dynamics regularization enables to smooth the curves, especially around
t = 30min where a discontinuity is visible in the reference case (blue curve). The three regular-
izations interact between each other in a efficient way (Fig. 16, ′all reg ′, red curves) since the
Tikhonov regularization enables to achieve one of the lowest ρfa at t = 0min, the population dy-
namics regularization enables to propagate this good initial insect presence prediction and the835

group-LASSO regularization enables to threshold spurious pheromone emissions and reduces
ρfp .

Consequently, combining the different regularizations represents a good trade-off to reduce
both false discovery and miss rates, which is the final operational objective for minimizing pesti-
cide use while keeping the amount of undetected pests low.840



Figure 16 – Prediction of insects presence with several regularization strategies: with no
regularization term (no reg, blue), with the population dynamic-informed regularization
term (32) (PD, orange), with the group-LASSO regularization term (25) (group LASSO,
pink), with Tikhonov and group-LASSO regularization terms (T+group LASSO, purple),
and a combination of all three population dynamic-informed, LASSO and Tikhonov regu-
larization terms (all reg, red). Upper panel: map of presence prediction at three different
time, true presence in black. Lower panel, miss rate ρfa (17) (solid lines) and false discov-
ery rate ρfp (18) (dashed lines) vs t .

3.7.5. Estimating active sensors with the one-sensor adjoint state criteria. We now look at the ma-
ximal total contributions ∥c∗

i ,tot∥∞ of the sensors and how the regularizations influence these
sensors contributions in the FAW case, see Sec. 2.4.3. Similar trends than those observed in
the Toy case are visible without regularization (blue curve on Fig. 17): a few sensors mainly
contribute, then a plateau is attained and finally, a few sensors without significant contribution.845

In the FAW case, adding population dynamics has low impact on sensor contribution, except
for the last ones. As in the Toy case, adding shrinkage through the ′groupLASSO ′ penalty (pink,
purple and red curves) amplifies and standardizes the contributions of the sensors.



Figure 17 – Sensor importance in BI-DA. Maximal total contribution ∥c∗

i ,tot∥∞ vs sen-
sor rank when sorted by contribution order for several regularization strategies in the
FAW case. It includes no regularization (no reg, blue), population dynamic-informed
(PD, orange), group-LASSO (group LASSO, pink), Tikhonov and group-LASSO (T+group
LASSO, purple), and a combination of all three population dynamic-informed, LASSO and
Tikhonov regularization terms (all reg, red). The quantity ∥c∗

i ,tot∥∞ indicates the maximal
(with respect to time and space) total contribution of sensor i all along the optimization
path

In conclusion, the different penalties tend to act in the same way than in the Toy case. We
however note that sensor contributions are less contrasted compared to the Toy case since the850

less informative sensors have been relocated in the convex hull of the most informative ones.

4. Discussion

4.1. Incorporating biological knowledge with BI-DA

In this study, we introduced a methodology to infer insect pest presence maps from signals
of a network of pheromone sensors dispatched over a field that must be protected against a855

pest. The inference method is built upon variational data assimilation techniques: the aim is to
reconstruct a control variable or a hidden state (here the quantity of pheromone emitted by
the insects) by combining a direct model (here the pheromone propagation model derived from
the atmospheric fluid dynamics) and data (here from the pheromone sensors). This combination
is done by minimizing the distance between the data and an estimate of the observed variable.860

Once the pheromone emission reconstructed, they are taken as a proxy of the pest presencemap.
The numerical experiments of classical Data Assimilation (DA) problem highlight that classical DA
enables to reconstruct the quantity of pheromone emitted almost only in a vicinity of the sensors.
To tackle this issue, we proposed several regularization terms specifically designed to add prior
Biological Information (BI) of the insects to improve the accuracy of the optimal solution. In865

particular, we introduced a population dynamics regularization that explicitly model the behavior
of the pest of interest, particularly for pheromone emission. Thus, the BI-DA reconstruction
is pulled towards a solution which is consistent with the physiology of the pest. The different
regularization terms have been rigorously tested in a toy case, using different criteria, such as
RMSE or false discovery and miss rates. The population dynamics regularization reduces the870



RMSE, especially at the end of the time window when the data are missing, and reduces the
miss rates without too much enhancing the false discovery rate, compared to the reference case
without regularization. But using the population dynamics term conjointly with Tikhonov and
LASSO terms provide the best results regarding presence/absence prediction, pulling the miss
rates towards zero with lower rate of false discovery. However, if few sensors have a strong875

contribution to the reconstruction with the population dynamics regularization, which allows
to expect to get comparable estimates with less sensors, coupling the different regularizations
increase the number of sensors that have a strong contribution to the estimate.

4.2. Strong vs weak constraint in biology-informed data assimilation

One of the most classical method, referred in this study as classical VDA, consists in con-880

sidering the direct model as strong constraint of the minimization problem: the estimate of the
observed variable is the solution of the direct model, knowing a given estimate of the control
variable. On the other hand, if the hidden state to reconstruct is the state variable of the direct
model, one can use methods where the direct model acts as weak constraint of the minimization
problem: the minimization problem aims to minimize the distance between the data and the es-885

timate of the observed variable computed from the hidden state, and the residual of the direct
model, see e.g. Trémolet, 2007.

In the BI-DA method we propose, the pheromone propagation model and the pheromone
sensor data are combined with biological information, especially model of the dynamics of the
insect population. Whilst the pheromone propagation model is used as strong constraint of the890

minimization problem, the biological information are incorporated in the minimization problem
as a weak constraint through the biology-informed regularization terms, see Sec. 3.1. Thus, the
combination of data, pheromone propagation model and biological information is based on a mix
of strong and weak constraints of the minimization problem.

One could propose a method where the minimization problem is strongly constrained by895

both the pheromone propagation model and the population dynamics model. For instance, in
such situation, the control to infer would be the initial density of insects p(t = 0, x , y) and the
observed variable would be estimated through the coupling of the population dynamics model
and the pheromone propagation model in the following way. For an estimate of p(t = 0), the
density of insects p(t, x , y) ∀(t, x , y) is propagated with the population dynamics model and900

thereby the quantity of pheromone emitted s(t, x , y) = q(t)p(t, x , y) can be computed. Then,
the pheromone propagation model (given s(t, x , y) ∀(t, x , y)) is used to evaluate the concentra-
tion of pheromone c(t, x , y) ∀(t, x , y) and the observed variable can be computed. One could
go even further by coupling the population dynamics model of the female insect population
emitting pheromone (depending on the density of male insects), the population dynamics model905

of the male population (depending on the pheromone concentration and its gradient) and the
pheromone propagationmodel (depending on the density of female insects emitting pheromone).
However, these methods based only on strong constraints require a good knowledge of the pop-
ulation dynamics. Actually, adding a strong constraint remains to assume that the observed data
are perfectly explained by themodel included in the strong constraint, with small modelling error.910

On the contrary, the weak constraints resulting from the biological informations included in
the BI-DA intrinsically take into account the modelling errors of the underlying biological pro-
cesses. As the weak constraint tries to minimize the residual of the population dynamics model,
an error model can be added to this residual to control its spatio-temporal correlation structure.
Therefore, the BI-DA method does not require as much precise knowledge of the pest biology915

as strong constraints. It is then better suited for situations where the biological informations is



only partially known or may be subject to errors or uncertainties. Moreover, strongly constrain-
ing by both the pheromone propagation model and the population dynamics model could make
the minimization problem more difficult to solve and lead to identifiability issues. Indeed, the
minimum of the cost function may not be unique if the population dynamics is non-linear, and920

adding multiple strong constraints may worsen the conditioning of the cost function.

4.3. Toward an effective use of BI-DA for pheromone sensor analysis

The proposedBI-DAmethod has been developpedwith consideration of practical constraints
encountered in real applications. However, several points still require improvements before an
effective use in an agricultural context. These improvements must be carried out in the frame-925

work of a global benefit-risks analysis of replacing pesticide-based prophylaxis by BI-DA-guided
treatments: a life cycle analysis (LCA) of the sensors should be conducted, includingmanufacture,
transport, deployment, use, recycling and computations and compared to the LCA of pesticides.
Beside carbon emissions, benefit-risks analysis should also compare the impact of the two prac-
tices on health, environment and biodiversity.930

First, computation time can be redhibiting for real applications, since solving BI-DA problem
presently requires tens of hours inHPC facilities. This computational load ismostly due to solving
the direct and adjoint pheromone propagation models, and to the number of iterations needed
by the gradient descent algorithm. To speed-up direct and adjoint models computations, adapted
metamodel technics, such as POD-based methods, can be studied. In this framework, PDE com-935

putations are replaced by fast approximations obtained by the surrogate model. Moreover, such
metamodels can be learned from more complex models than the 2D pheromone propagation
model used in this study. For instance, a 3D pheromone propagation model that accounts for
vertical variability could be considered. While such models may be computationally infeasible
for real-time applications, they can be solved and used offline to train a that could be used in-940

line for BI-DA. Speeding-up the gradient descent algorithm can be obtained by improving the
convergence rate, thus reducing the number of iterations needed for convergence, using precon-
ditionning technics.

Second, the selectivity of pheromone sensors, which is key for precise detection, has as the
counterpart that a new sensor network should be deployed for a new target species. From a945

modelling point of view, increasing the number of target species will not change the CTM direct
model which will be identical to all the species, so that a sub-linear increase of DA computa-
tion load can be expected. However, as the new species may have its proper behavior, BI-DA
regularisation terms must be adapted to the new target, inducing model development time.

Finally, we chose for this study a data assimilation framework where the whole time series950

of sensor signals are obtained at once and available for inference. A more sequential frame-
work where presence predictions are updated when new data are available would be usefull for
an adaptative and sequential sensor placement and data acquisition. This framework is particu-
larly suitable for epidemio-surveillance where a dynamic screening is key to adapt the treatment
to the pest dynamics. We note that our variational approach is mathematically equivalent to955

Kalman smoothing on the whole time window whenever the biology informed-regularization
terms are differentiable and quadratic. However, we note that the LASSO and group-LASSO
terms are not differentiable and that a non-linear population dynamics model would result in a
non-quadratic PD term. Furthermore, the variational approach avoid to build and store the gain
and covariance matrices needed for Kalman filtering, thus reducing the computational load.960



4.4. Uncertainty sources in the model

The proposed BI-DA method and the inference of pheromone sources are subject to various
source of uncertainties. These uncertainties are of several types: uncertainties related to the en-
vironmental parameters, to the pheromone propagation model, to the test cases, to the sensors
and the data.965

Uncertainties related to the environmental parameters. The pheromone propagation is modelled
using the 2D CTM (1). Thus, the resulting pheromone concentration depends on environmental
parameters such as the wind velocity field u⃗ and the loss coefficient τloss . However, the estima-
tion of these two environmental parameters is itself uncertain.

In the realistic FAWcase, thewind velocity is estimated using the data provided by the Arome970

model, see Sec. 2.3.2. This model have a spatial sampling of 0.01◦(≈ 1.3km) and a temporal
sampling of 1h. Thus, the smaller scale are not taken into account in the wind data. On the other
hand, the spatial and temporal scale considered in realistic application are smaller: of the order of
magnitude of a couple of minutes and of tens of meters. Therefore, in this context, uncertainties
related to the small spatio-temporal scale of the wind field could be taken into account.975

The loss coefficient τloss enables to parametrize all the vertical fluxes not directly modelled
in the 2D model, see Sec. B.1.2. This coefficient depends in particular on the vegetation that
absorbs a part of the pheromone that settles on the ground, and on the atmosphere stability. In
this study and up to now, this coefficient is calibrated so the 2D CTM fits to a particular solution
of the 3D CTM, see Sec. B.1.3. However, the calibration of τloss with respect to the land use980

remains rather empirical and source of uncertainties.

In order to understand the impact of these uncertainties on the pheromone propagation
and on the pheromone source inference, an uncertainty quantification and a sensitivity analysis
of the model with respect to these environmental parameters could be conducted, taking into
account these different scales.985

Uncertainties related to the pheromone propagation model. The 2D CTM model is derived from
a 3D CTM model by averaging the 3D model over an atmospheric layer depth. This approx-
imation is source of uncertainties since potential vertical variability of the wind in the layer,
updrafts or vertical turbulence are roughly taken into account through the loss term. Additional
modelling errors can come from inaccurate model parametrization or inaccurate modelling hy-990

pothesis. These uncertainties could be tackled by devoting more effort to modelling pheromone
propagation. This includes the use of models that takes into account the random nature of the
uncertainties and of metamodels that potentially take into account the vertical variability of the
atmosphere.

Uncertainties related to the test cases. To illustrate the performance of the BI-DA method com-995

pared to a classical DA method, the data are generated from a target pheromone emission that
we aim to retrieve. In these test cases, the computation domain, the location of the target emis-
sion and of the sensors and more generaly the landscape design or the meteorological informa-
tion are sources of uncertainties. A systematic quantification of these uncertainties can be per-
formed using sensitivity analysis to assess the impact of these parameters on the BI-DA problem.1000

In particular, the importance of some simplificatory assumption can be explored.

For instance, in both Toy and FAW cases, it is assumed that all the pheromone emissions are
inside the computation domain. If some pheromone emission are located out of the computation
domain, one might expect that small spurious pheromone emissions will be retrieved inside the



domain by the inference to compensate influx through the domain boundaries, that are not con-1005

sidered in the inverse model. However, as done in the FAW case with the sensors reallocation,
see Sec. 3.6, this type of uncertainty can be bypassed using the following steps. First, we start
over a large domain and perform the inference. Then, we perform the relocation process based
on the one-sensor adjoint state-based criteria as done in the FAW case and reduce the compu-
tation domain (and potentially refine the mesh) to a narrower domain around the new sensors1010

location. These steps can be repeated several times.

Uncertainties related to the sensors and the data. The data used in this study are synthetic: they
are generated from a target pheromone emission and an observation model that includes a pre-
concentration phase, see Sec. 2.3.2. As soon as suitable sensors are available, the classical DA
and new BI-DA methods should be tested in progressively less controlled environment and con-1015

ditions. These tests should start with controlled laboratory experiment with pheromone spray
and controlled wind condition, progressing to tests conducted in open fields with uncontrolled
environment. The technological developments of pheromone sensors will aim to obtain com-
pact devices, making it possible to move the sensors in order to implement adaptative strategies
such as sensor repositionning. This will enable us to test the proposed methods in real condi-1020

tion and improve them by taking into account the properties of the sensors and the statistics of
their data. Efficient data acquisition strategies should be considered in order to mitigate data ac-
quisition uncertainties, such as optimal experimental design or dynamical sensor repositionning
strategies.

4.5. Sensor placement and reallocation1025

In BI-DA, we try to leverage spatio-temporal data obtained through a network of sensors
that measure spatio-temporal concentration maps of pheromone. The time and space sampling
of these map is key for the accuracy of the inference, as illustrated in the FAW case, see Sec. 3.6.
The time sampling is given by the intrinsic functioning of the sensors. Due to the small amount
of pheromone in the landscape, pre-concentration chambers accumulating the signal to detect1030

are necessary, which determine the minimal time step of the time sampling. The space sampling
is given by the spatial repartition of the sensor over the landscape.

In this study, we did not investigate the sensitivity of the inverse problem to the spatial place-
ment of the sensors. Optimal design for building sampling design minimizing the variance of the
inference can be constructed in comparable spatio-temporal inference problems (Parisey et al.,1035

2022). This optimal design indicates, given environmental and landscape characteristics, where
the sensors should be placed in order to get the best possible confidence on the estimate. It also
provides, after hyperparameter selection, the number of sensors necessary to achieve a given
accuracy.

Optimal placement is beyond the scope of this study and will be explored in future works.1040

However, we introduced a specific metric measuring the maximal total contribution of a given
sensor. This metric allows to order the sensors by contribution in the inference, hence distin-
guishing between key and accessory sensors. One could then imagine an iterative method for
a dynamics placement of the sensors where the marginally contributing sensors are reallocated
and moved to another place where they could enhance the accuracy of pest presence/absence1045

estimates.We investigated how this criteriawas impacted for varying BI-DA regularization terms.
We found that some regularization terms supplement the information taken out of most sensors
and only a few key sensors still significantly contribute to the inference. This is the case for pop-
ulation dynamics and Tikhonov regularization terms. As these regularization terms highlight the



sensors that do not significantly contribute in the light of both the propagation of the pheromone1050

and the biological information, they can be used to study the placement and reallocation of sen-
sors with regards to the pheromone propagation, including the atmosphere dynamics and envi-
ronmental parameter, and to the biological knowledge of the insects, including the dynamics of
its population. On the contrary, other regularization terms amplify the information taken out of
the sensors and the contribution of every sensors. This is particularly the case for regularizations1055

involving a LASSO term. This stresses the fact that optimal placement strategies will depend on
the selected regularization terms.

5. Conclusion

We introduced in this study a numerical framework to solve the inverse problem for pest
detection from the assimilation of pheromone concentration data. We specifically worked on1060

adding prior biological knowledge on the population dynamics and the behavior of the pest
to the inference problem. Diverse regularizations to biologically inform the data assimilation
have been proposed and benchmarked. The population dynamics model enables to propagate
emissions well estimated by the data to places and times that are not covered by the assimilation
of the data set.1065

To reduce the pest miss rate, synonymous of a better control of the pest infestation, without
increasing too much the false discovery rate, synonymous of unnecessary pesticide application,
the following conclusions can be formulated:

(1) Some regularization terms, such as LASSO or group-LASSO, filter out spurious signals,
hence enhancing the information provided by the sensors. This leads to lower false dis-1070

covery rate but higher miss rate.
(2) Some regularization terms, such as the population dynamic-informed or Tikhonov regu-

larization terms, provide prior information that can partially supplement the signal pro-
vided by the sensors, leading to lower miss rate, sometimes to the cost of a higher false
discovery rate.1075

(3) The sensor contribution to the inference can be measured with the one-sensor adjoint
state criteria. Regularization terms can decrease the contribution of some sensors and
enable to efficiently discriminate sensors with high and low contributions. This implies
that less sensors are required to achieve equivalent accuracy in the inference. Moreover,
sensors with the lowest contribution can be moved to increase inference accuracy of1080

emission sources. In this respect, population-dynamic or Tikhonov regularization terms
are convenient to benchmark sensor position.

(4) Once sensor location is fixed, cumulating regularization terms can reduce miss rate while
keeping false discovery rates in reasonable values. In particular, it is worth using a com-
posite regularization mixing knowledge on favorable habitat and population dynamics1085

and thresholding spurious pheromone emissions.
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Appendix A. Data, script, code, and supplementary information availability

The toolbox containing the core functions for BI-DA is available at https://forgemia.inra.

fr/pherosensor/pherosensor-toolbox and (Malou et al., 2024b). The companion codes needed
to reproduce the different computation and figures of this paper are available at https://forgemia.

inra.fr/pherosensor/companion-code-bi-da and (Malou et al., 2024a).1265

Appendix B. Supplementary material

B.1. Derivation of the depth-integrated chemical transport model

This section aims to present the derivation of the 2D model of pheromone propagation (1).
In a first part, a classical 3D model of the pheromone propagation in the atmosphere, also called
3D CTM (Chemical Transport Model), is presented. Then, the 2D model, presented in Sec. 2.11270
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and used in this study, is derived from this 3D model. In the last part, the calibration of the 2D
model using the 3D model is presented.

B.1.1. 3D chemical transport model. In this section, C (x⃗ , t) (g .m−3) denotes the density of chem-
ical (here the pheromone) at a given point x⃗ = (x , y , z) ∈ R

2 × R
+ and at a time t ∈ R

+. The
equation of mass conservation of C can be written as the following PDE, see e.g. reviews in1275

(Leelössy et al., 2014; Sportisse, 2007):

(34)
∂C

∂t
(x⃗ , t) + ∇3D · (−K3D(x⃗ , t)∇3DC (x⃗ , t) + u⃗3D(x⃗ , t)C (x⃗ , t)) = S(x⃗ , t)

with −K3D∇3DC+ u⃗3DC (g .m−3.m.s−1) the mass flux of pheromone due to the diffusion and
the advection of the pheromone in the atmosphere, and S(x⃗ , t) (g .m−3.s−1) the source term, i.e.
the quantity of pheromone emitted by the insects per seconds and per air volume in the present
context. In this section, ∇3D denotes the 3D gradient operator ∇3D = (∂x ∂y ∂z), in order to1280

distinguish with the 2D gradient operator used in the rest of the article.
This equation can be obtained from the reactant Navier-Stokes equations using the dilution

hypothesis. This hypothesis consists in assuming that the chemical of interest is present in the
atmosphere in a very small quantity and does not significantly impact the dynamic of the atmo-
sphere. It results that the dynamics of the atmosphere and the dynamics of the pheromone are1285

decoupled.
As classically done in the K-theory, see e.g. Panofsky et al., 1984; Sportisse, 2007, the dif-

fusion flux due to fluctuations of the air motion caused by the turbulence of the atmosphere
at non-resolved scales is closed using the Fick’s law. This law relates the diffusion flux to the
gradient of the concentration and leads to the diffusion term −K3D∇3DC with K3D(x⃗ , t) the dif-1290

fusion tensor. In the present case, the diffusion tensor, a priori non-homogeneous, is assumed
anisotropic in the Oxy plane but isotropic along the z axis. Thus, the diffusion tensor can be

written as: K3D =






Kxx Kxy 0

Kyx Kyy 0

0 0 Kzz




.

The advection flux of mass u⃗3DC is due to the wind and the gravity, and u⃗3D(x⃗ , t) is the
velocity of the pheromones in the atmosphere. Thus, the velocity of the pheromones can be1295

written as u⃗3D = (u, v ,−wset). The components u and v of the velocity are given by the wind
velocity. Since the vertical wind velocity is assumed to be negligible and the pheromones are
heavier than the air, the vertical component −wset is the settling velocity, i.e. the velocity at
which the pheromones fall due to the gravity.

The dilution hypothesis and decoupling of the pheromone and atmosphere dynamics imply1300

that the diffusion tensor K3D and the wind field u⃗3D can be computed separately by a meteoro-
logical model and given as environmental parameters of the CTM model (34).

As the pheromones are settled under the effect of the gravity, they end up on the ground and
a part of the pheromones are absorbed by the ground. To model this phenomenon, the following
boundary condition on the vertical mass flux is commonly used:1305

(35) (Kzz∂zC + wsetC )
∣
∣
z=0

= wdepC
∣
∣
z=0

with wdep the deposition velocity.

B.1.2. Depth integration of the 3D CTM model. The 3D CTM (34) is now integrated over a layer
of the atmosphere z ∈ [h−; h+] in order to obtain the 2D model used and presented in Sec. 2.1:

(36)
∫ h+

h−

∂C

∂t
− ∇3D · (K3D∇3DC ) + ∇3D · (u⃗3DC ) dz =

∫ h+

h−

S dz



In the following, the total concentration of pheromone in the layer is denoted c(x , y , t) =
∫ h+
h−

C (x , y , z , t)dz .
The integral of the different terms are now computed in order to obtain a 2D model.1310

The integral of the time derivative becomes simply:

(37)
∫ h+

h−

∂tCdz = ∂tc

The integral of the advection term can be written as:
∫ h+

h−

∇3D · (u⃗3DC )dz =

∫ h+

h−

∂x(uC ) + ∂y (vC )dz

︸ ︷︷ ︸

=I1

+

∫ h+

h−

∂z(−wsetC )dz

︸ ︷︷ ︸

=I2

Assuming that the velocity components u and v are constant or near the average value over the
layer of interest, the integral I1 becomes:

(38) I1 = ∂x

(
∫ h+

h−

uCdz

)

+ ∂y

(
∫ h+

h−

vCdz

)

= ∂x (uc) + ∂y (vc)

The integral of the diffusion term can be written as:1315

−
∫ h+

h−

∇3D ·(K3D∇3DC ) dz = −
∫ h+

h−

∂x (Kxx∂xC + Kxy∂yC ) + ∂y (Kyx∂xC + Kyy∂yC ) dz

︸ ︷︷ ︸

=I3

−
∫ h+

h−

∂z (Kzz∂zC ) dz

︸ ︷︷ ︸

=I4

In the present case, the diffusion coefficients in the plane Oxy Kxx , Kxy , Kyx and Kyy is assumed
to not depend on the depth z which is a common assumption. Thus, the integral I3 becomes:

I3 = ∂x

(
∫ h+

h−

Kxx∂xC + Kxy∂yCdz

)

+ ∂y

(
∫ h+

h−

Kyx∂xC + Kyy∂yCdz

)

= ∂x (Kxx∂xc + Kxy∂yc) + ∂y (Kyx∂xc + Kyy∂yc)(39)

From the integrals of the advection and the diffusion terms, it remains the vertical mass fluxes
I2 − I4 that become:

(40) I2 − I4 = −
∫ h+

h−

∂z (Kzz∂zC + wsetC ) dz = −[Kzz∂zC + wsetC ]z=h+
z=h−

In the present study, these vertical fluxes, which model the quantity of pheromones leaving the1320

layer of interest, are closed using a 1st order term, i.e. by a reaction term weighted by a loss rate
τloss(x , y):

(41) I2 − I4 = −[Kzz∂zC + wsetC ]z=h+
z=h−

≈ τlossc

At last, the total amount of pheromone emitted by the insects in the layer of interest is denoted:

(42)
∫ h+

h−

S(x , y , z , t)dz = s(x , y , t)

By introducing the expression of the integrals (37), (38), (39), (41) and (42) in the 3D CTM inte-
grated over a layer of the atmosphere (36), we obtain the 2D CTM:1325

(43)
∂c

∂t
− ∇ · (K∇c) + ∇ · (u⃗c) + τlossc = s

with the u⃗ and K resp. the wind field and diffusion tensor in the Oxy plane.

B.1.3. Calibration of the loss coefficient τloss . In the derivation of the 2D CTM from the 3D CTM,
the vertical fluxes are closed by a reaction term weighted by a loss coefficient τloss . This coeffi-
cient depends on the vertical fluxes. Thus, it depends on the atmosphere (through the vertical
diffusion), on the pheromone’s molecules (through the settling velocity) and on the vegetation1330



(through the deposition velocity). However, the estimation of τloss is not straightforward. In this
section, a method of estimation of τloss is proposed. In the present study, τloss is estimated by
comparing the solution of the 2D CTM derived in the previous section and the integral over the
layer of the Gaussian plume, the solution of the 3D CTM (34) in a particular case.

The following assumptions are made. It is assumed that the diffusion tensor is isotropic and1335

constant (K3D = KId ) and that the wind is unidirectional and constant (⃗u3D = (u, 0,−wset)).
Moreover, it is assumed that the source term is of the form S(x⃗) = Qδ(x)δ(y)δ(z − H) with Q a
constant emission rate andH the height at which the source of emission is located. The Gaussian
plume is the solution of the 3D CTM under these assumptions and is of the following form, see
more details and a review on the topic in (Stockie, 2011):1340

(44) Cgp(r , y , z) =
Q

u

1√
4πr

Gh(r , y , z)Gv (r , y , z)Fbc(r , y , z)

with:
Gh(r , y , z) = exp

(

− y2

4r

)

,

Gv (r , y , z) = exp

(

− wset(z−H)
2K − w2

set r

4K2

)(

exp
(

− (z−H)2

4r

)

+ exp
(

− (z+H)2

4r

))

,

Fbc(r , y , z) =
4w0πr
K

exp

(

− wset(z−H)
2K − w2

set r

4K2

)

exp

(

w0(z+H)
K

+
w2
0 r

K2

)

erfc
(
z+H
2
√
r
+ w0

√
r

K

)

,

the change of variable r = 1
u

∫ x
0 K (ξ)dξ, erfc the complementary error function and w0 = wdep −1345

wset

2 .

In order to get realistic estimations of the loss coefficient τloss , the solution of the 2DCTM (43)
c is empirically comparedwith the integral over the layer of theGaussian plume

∫ h+
h−

Cgp(r , y , z)dz

under the assumptions presented above in a realistic case.

Based on the average of the wind speed of the meteorological data, the value u = 12m.s−1
1350

is used in this section. The settling velocity is set as wset = 2.7 × 10−3m.s−1 as used in (Stockie,
2011). It is assumed that the source of pheromone is located atH = 2m and the layer of interest is
2mwide centred at the height of the pheromone source (h± = H±1m). The values of deposition
velocitywdep with respect to the vegetation used here are found in (McMahon et al., 1979). From
this realistic case, it results the value of τloss given in Tab. 1.1355

B.2. List of additional population dynamics-informed regularization terms

We detail here additional regularization terms that could be used during the inference pro-
cess. These regularization terms are not included in the results, since they were not included in
the numerical exploration of the BI-DA problems, in order to limit the number of possibilities and
to focus on the known behavior of the FallArmyWorm (FAW), our insect of interest. However, we1360

indicate here a large list of features that could be introduced in the population dynamic-informed
regularization term (27). The corresponding gradient of the terms are indicated in section B.3.2.

B.2.1. Logarithmic barrier term for exclusion zone. As mentioned in Sec. 3.1.1, the biology-based
Tikhonov enables to take into account the favorite habitat of the insects. Nonetheless, this ap-
proach does not preclude the possibility of locating insects in areas that they will avoid.1365

To do so, one can consider a jreg based on a logarithmic barrier function, see e.g. (Nesterov,
2018). This approach, and barrier function in general, is in particular used in penalty method
that replaces an inequality constraint (e.g. h(s; x , y , t) < b ∀t ∈ [0;T ] ∀(x , y) ∈ Ωc ) by a penaliz-
ing term (e.g.

∫ T
0

∫

Ωc
−ϵ log(b − h(s; x , y , t))dxdydt with Ωc the constraint domain ϵ a very small

constant) easier to handle in optimization problems.1370



In the present case, this penalizing term aims to preclude locating insects in areas that they
will avoid or where they will not emit pheromones, i.e. s = 0 or very small on the exclusion zone
Ωexc derived from the biological knowledge of the insect. For instance, it is known that the FAW
females emit pheromones in a vertical position on vegetation that are favorable for the growth of
the larva. Hence, the FAW females will not emit pheromones in some areas that are not suitable1375

such as roads.

Therefore, the following regularization/penalization term is considered:

(45) jreg ,exc(s) =

∫ T

0

∫

Ωexc

−ϵ log(ϵ − s(x , y , t)2)dxdydt

Let us note that this logarithmic barrier function is smooth (and hence differentiable) and tends
to the indicator function (0 if s = 0 locally, +∞ otherwise) when ϵ → 0.

B.2.2. Population-dynamics models. Recall that the quantity of pheromone emitted s can be writ-1380

ten as s = pq with q the quantity of pheromone emitted per insect, which is assumed to be a
biological knowledge, and p the density of insect. Moreover, the density p, and consequently s ,
follows a population dynamic model that can be written in the generic way as following:

∂tp + ∇
(
∑

i

Fi (p)

)

−
∑

i

Ri (p) = 0(46)

⇔1

q
∂ts − ∂tq

q2
s + ∇

(
∑

i

Fi (s)

)

+
∑

i

Ri (s) = 0

with Fi and Ri are resp. flux and reaction terms that model the behavior of the insect specie of
interest, and Fi (p = s

q
) = Fi (s) and Ri (p = s

q
) = Ri (s).1385

As mentioned earlier, only a little number of terms have been introduced in this study. In this
section, we aim to indicate a large list of features and resulting population dynamics terms that
could be introduced in the population dynamic-informed regularization term (27).

Diffusion term. The most classical term modelling population dynamics is the diffusion term:

(47) Fd(p; x , y , t) = −σ(x , y)∇p(x , y , t) ⇔ Fd(s) = − 1

q(t)
σ(x , y)∇s(x , y , t)

with σ [m2.s−1] the diffusion coefficient of the population, depending notably on the specie.1390

This term models the spread of the population at a macroscopic scale caused by a motion of
each individual in a random direction with a probability independent of other individuals or the
environment. This diffusion term can be understood as a continuous and large population limit
of a discrete microscopic unbiased randomwalk process with a fixed probability of jump, see e.g.
(Nisbet et al., 1982) or (Murray, 2002).1395

Simple models based on the diffusion term (47) are used to model insects population dynam-
ics in (Kareiva, 1983) where the author provides constant values of σ for 12 species based on
experimental data.

Advection term. This term models the advection motion of the population toward a determined
direction, see e.g. (Murray, 2002):1400

(48) Fa(p; x , y , t) = v⃗i (x , y , t)p(x , y , t) ⇔ Fa(s) =
1

q(t)
v⃗i (x , y , t)s(x , y , t)

with v⃗i [m.s−1] the velocity field of the population (assumed here independent of p).

For instance, one can model the attraction of the population toward the preferred habitat by
choosing the velocity field v⃗i (x , y) = ∇ϕ(x , y), where ϕ denotes the iso-distance line function



from this habitat. This term can also be understood as an attractive force produced by the poten-
tial function ϕ representing how favorable the environment is, see e.g. (Shigesada et al., 1979)1405

and in the review (Okubo, 1986). The two following terms are specific cases of advection terms.

Quorum sensing term. This term models the advection motion of the population but toward a
direction depending on the population density:

(49) Fqs(p; x , y , t) = v⃗i (p; x , y , t)p(x , y , t)

with v⃗i (p) the density-dependent velocity field of the population.

This term enables to model the advection and spread of the population where the individuals1410

interact with each other. The most classical density-dependent velocity field is

(50) v⃗i (p) = −σqs∇p

with σqs [m2.m2.s−1] the diffusion coefficient per density unit. This velocity field enables
to model a motion due to avoidance of overcrowded places and population pressure, see e.g.

(Murray, 2002). It can also be understood as the diffusion of the population at a macroscopic
scale caused by a motion of each individual in a biased random direction with a probability in-1415

creasing with the density of individuals, see e.g. (Murray, 2002; Nisbet et al., 1982). This density-
dependent velocity field (50) leads to the term in variable s

(51) Fqs(s) = −σqs

q2
s∇s

Avoidance of overcrowded places and of population pressure is a common behavior among
insects, see e.g. (Murray, 2002; Shigesada, 1980) and references therein. For instance, (Shige-
sada, 1980) proposes and applies a model with the term (49) and the velocity field (50) to an1420

ant lion population. This model is based on experiments highlighting population pressure in this
population.

Pheromone sensing term. This term models the advection motion of the population but toward
a direction depending on the concentration of pheromone:

(52) Fps(p; x , y , t) = χp(x , y , t)∇c(s; x , y , t) ⇔ Fps(s; x , y , t) =
χ

q(t)
s(x , y , t)∇c(s; x , y , t)

with χ [m2.g−1.m2.s−1] the chemotactic gain constant (χ ∈ R
+∗).1425

The insects employ pheromones to attract individuals of the same sex, such as in the case
of sex pheromones for FAW, or of both sexes, as is the case with aggregation pheromones for
the red palm weevils. To reach the source of the pheromone, the insects moves in the direction
of the gradient of concentration of pheromones. This motion induced by a chemical signal is
commonly known as chemotaxis, especially in cellular biology. A Keller-Segel-type system (Keller1430

et al., 1970, 1971) can be used to model at the same time both the population dynamics (here of
the insects) and the dynamics of the chemical attractant (here the pheromone), see e.g. (Murray,
2002; Perthame, 2006).

For instant, (Ganga Prasath et al., 2023) proposes a Keller-Segel-type system to model the
dynamics of swarm of bees communicating using a pheromone.1435

Logistic term. Introduced by Verhulst in the 19th century, the logistic growth is used to model
a self-limiting birth-death process, see e.g. (Murray, 2002) or (Perthame, 2006) and reference
therein:
(53)

Rl(p; x , y , t) =
r

κ
p(x , y , t)(κ − p(x , y , t)) ⇔ Rl(s; x , y , t) =

1

q(t)2
r

κ
s(x , y , t)(κq(t) − s(x , y , t))



with r [s−1] the linear reproduction rate (r ∈ R
+∗) and κ [m−2] the carrying capacity of the

environment (κ ∈ R
+∗).1440

This term enables tomodel a saturation phenomena that ariseswhen themaximal occupation
density (the carrying capacity) is exceeded (p > κ, the death process overcome the birth process),
and invasion front. This saturation is for instance due to intra-specific competition for a limited
resource that is consumed faster than it can renewed.

The equation obtained when considering diffusion and logistic source is the well-known1445

Fisher-KPP equation, introduced in (RA Fisher, 1937) to model the spread of favorable gene
and first used for population dynamics problems in (Skellam, 1951). A Fisher-KPP-type system
is for instance used in (Takahashi et al., 2005) to model the dynamics of mosquitoes populations
where the clear water (required for egg-laying) and the amount of nutrient (human blood) are
limited, potentially leading to saturation phenomenon.1450

Allee effect term. The Allee effect is characterized by the decrease of the population due to a
small or sparse population. The following term is an extension of the logistic term (53) which
additionally models the Allee effect, see e.g. a review in (Sun, 2016) and reference therein:

RAe(p; x , y , t) =
r

κ+κ−
p(x , y , t)(κ+ − p(x , y , t))(p(x , y , t) − κ−)(54)

⇔RAe(s; x , y , t) =
1

q(t)3
r

κ+κ−
s(x , y , t)(q(t)κ+ − s(x , y , t))(s(x , y , t) − q(t)κ−)

with r [s−1] the linear reproduction rate (r ∈ R
+∗), κ+ [m−2] the carrying capacity of the environ-

ment (κ+ ∈ R
+∗) and κ− [m−2] the Allee threshold (κ− ∈ R

+∗ and κ− < κ+) that is the critical1455

density under which the population decrease.

This effect is e.g. due to the lack of interactions between individuals of the population. In
insect populations, the Allee effect commonly occurs since lower densities reduce the chance
of an individual to to locate a mate for purpose of reproduction.

Since the Allee effect can lead to the extinction of the insect population, it is often used in1460

pest control strategy, see e.g. (Boukal et al., 2009).

B.2.3. Non-local terms. The non-local terms are generalization of the previously presented terms.
These non-local terms enable to model non-local interaction and long range diffusion, leading
for instance to spatial patterns, see e.g. (Furter et al., 1989), (Genieys et al., 2006) or (Murray,
2002) and reference therein. Non-local terms arise especially when the individuals of the popu-1465

lation communicate with each other remotely, e.g. using chemical or visual signals, or when the
individuals interact with the environment not local but surrounding.

For example, one can extend the logistic term (53) into a non-local version:

Rnll(p; x , y , t) =
r

κ
p(x , y , t)(κ − k ∗ p(x , y , t))(55)

⇔Rnll(s; x , y , t) =
1

q(t)2
r

κ
s(x , y , t)(κq(t) − k ∗ s(x , y , t))

with the convolution product k ∗ s(x , y , t) =
∫

Ω k(x − x ′, y − y ′)s(x ′, y ′, t)dx ′dy ′ and k the con-
volution kernel.1470

This implies that individuals are not competing for the resource locally available, as with the
term (53), but for the resource available in a vicinity. In this term, the convolution product can be
seen as an average weighted by the kernel k that defines how the individuals interact with the
vicinity and how large is this vicinity. Let us note that the local term (53) is retrieved if k is the
Dirac kernel δ. Similarly, one can consider a non-local Allee effect term to model the decrease1475

of the population due to a small or sparse population in a vicinity. For instance, (Britton, 1989)



proposed a non-local version of the Fisher-KPP equation based on this non-local logistic term.

As mentioned before, a Keller-Segel type system can be used to model both the dynamics
of the population and the dynamics of the chemical attractant, in which the quantity of chemi-1480

cal attractant emitted depends on the population density. In special cases, the equation of the
chemical attractant dynamics can be analytically solved. The concentration of the attractant can
then be expressed as a convolutional product between the density of the population and a ker-
nel describing the attractant dynamics, which leads to a non-local flux term in the population
dynamics model, see e.g. (Perthame, 2006).1485

For example, in the present case, one can approximate the pheromone dynamics, described
in the direct model (1), by a Gaussian plume cgp(s) = ggp ∗ s with ggp the Gaussian plume kernel.
Injecting this approximation in the pheromone sensing term (52) leads to a non-local pheromone
sensing term:

(56) Fnlps(s; x , y , t) =
χ

q(t)
s(x , y , t)∇(ggp ∗ s(x , y , t))

1490

Non-local terms of the shape Rlr (p) ∝ k ∗ p can be used to model long range diffusion
processes. The range of the diffusion processes depends on the choice of the kernel k and its
moments, see e.g. (Murray, 2002).

B.3. On solving the optimization problem (3)1495

In this section, we present all the calculation details for solving the optimization problem
(3) presented in Sec. 2.2. In the present context, the cost function j is optimized using gradient
descent or proximal gradient methods. Recall that the gradient of j , or at least of its differentiable
part, is given by

(57) ∇s j = ∇s jobs + ∇s jreg

with jreg =
∑

i αreg ,i jreg ,i ⇒ ∇s jreg =
∑

i αreg ,i∇s jreg ,i .1500

In Sec. 2.2.2, it is mentioned that ∇s jobs = −c∗ with c∗ the adjoint state, solution of the
adjoint model (6). In a first part, the derivation of the adjoint model and of the expression (7) are
detailed. Moreover, related models used in this study, such that the one-sensor adjoint model,
will be detailed.

In Secs. 3.1 and B.2, several Biology-Informed differentiable jreg ,i are proposed. In a second1505

part, the gradients of these jreg ,i are calculated.

In Sec. 3.1.2, LASSO and group-LASSO regularization terms are proposed. However, these
jreg are not differentiable. Thus, a proximal gradient algorithm is used in this study. In a third part,
we present the proximal-gradient algorithm and its application to the LASSO and group-LASSO
regularization terms, called ISTA algorithm.1510

B.3.1. Derivation of the adjoint model and related. In this section, KT denotes the control space
and KT = L2([0;T ];K) with K the space of functions from Ω ⊂ R

2 to R which regularity in
space is required in order to solve the direct model (1). We assume that the spaces KT and K
are Hilbert spaces and we have
< f , g >KT

=
∫ T
0 < f (t, ·), g(t, ·) >K dt .1515

In a similar way, VT = {f ; f ∈ L2([0;T ];V) and ∂t f ∈ L2([0;T ];V)} denotes the space of the
state variable, solution of the direct model and we have < f , g >VT

=
∫ T
0 < f (t, ·), g(t, ·) >V dt .



Moreover, D denotes the observations space.

Asmentioned previously, the gradient of the cost function is∇s j(s) = ∇s jobs(s)+αreg∇s jreg (s)1520

with the gradient of the observation term (4) that is: ∀δs ∈ KT

< ∇s jobs(s), δs >KT
= 2 < R

−1
(

m(c(s)) − mobs
)

,
dm

dc
(c(s)) · dc

ds
(s) · δs >D(58)

= 2 <

(
dm

dc
(c(s))

)∗
· R−1

(

m(c(s)) − mobs
)

,
dc

ds
(s) · δs >VT

= 2 <

(
dc

ds
(s)

)∗
·
(
dm

dc
(c(s))

)∗
· R−1

(

m(c(s)) − mobs
)

, δs >KT

with s 7→ c(s) the operator that given s returns the solution of the direct model (1) and dsc(s)

the derivative of this operator with respect to s . However, the operator (dsc(s))∗ may not be
easy to calculate. The adjoint model provides a method to estimate the results of this operator.

1525

Linear tangent model. In this section, the direct model is written as :

(59)
∂c

∂t
+ A(c) = B(s)

In our context, the differentiable operators are:

(60) A(c) = ∇ · (u⃗c − K∇c) + τlossc and B(s) = s

with the boundary conditions:

• a null diffusive flux K∇c · n⃗ = 0 ∀(x , y) ∈ ∂Ω,
• a null convective influx u⃗c · n⃗ = 0 ∀(x , y) ∈ ∂Ω∩ {(x , y)|⃗u(x , y , t) · n⃗ < 0} ∀t ∈]0;T ] with1530

n⃗ the outgoing normal vector.

Denoting ω = dsc · δs ∈ VT , the linear tangent model is then:

(61)
∂ω

∂t
+

dA
dc

(c(s)) · ω =
dB
ds

(s) · δs

with the initial condition ω(t = 0) = 0 (since c(t = 0) = 0 ∀x , y ∀s).
Let us note that, in the present case, dcA = A since A is a linear operator. By applying the1535

scalar product with a test function z ∈ VT and integration by part, we then have:

(62) <
∂z

∂t
−
(
dA
dc

(c(s))

)∗
· z ,ω >VT

−[ < z ,ω >V
]t=T

t=0
= − <

dB
ds

(s) · δs, z >VT
∀z ∈ VT

Adjoint model. On the other hand, based on the expression of the gradient of j (57) and of jobs
(58), the gradient of j satisfies: ∀δs ∈ KT

(63) < ∇s j , δs >KT
=< ∇s jreg , δs >KT

+2 <

(
dm

dc
(c(s))

)∗
· R−1

(

m(c(s)) − mobs
)

,ω >VT

By introducing the linear tangent model (62) in the equation of gradient (63), we then have:
∀δs ∈ KT and ∀z ∈ VT1540

< ∇s j , δs >KT
= < ∇s jreg , δs >KT

− <
dB
ds

(s) · δs, z >VT

(64)

− <
∂z

∂t
−
(
dA
dc

(c(s))

)∗
· z − 2

(
dm

dc
(c(s))

)∗
· R−1

(

m(c(s)) − mobs
)

,ω >VT
(65)

+
[

< z ,ω >V
]t=T

t=0



Thus, the adjoint model aims to find a particular test function c∗ of VT , so-called adjoint state,
that satisfies:

(66)
∂c∗

∂t
−
(
dA
dc

(c(s))

)∗
· c∗ = 2

(
dm

dc
(c(s))

)∗
· R−1

(

m(c(s)) − mobs
)

with a null final condition c∗(t = T ) = 0 ∀(x , y) ∈ Ω.

For the differential operatorA given by Eq. (60), the adjoint operator
(
dcA)∗ is simply

(
dcA)∗ ·

z = −∇ · (KT∇z) − ∇(u⃗z) + (∇.⃗u)z + τlossz and the boundary conditions of the adjoint model1545

are:

• a null diffusive flux KT∇c∗ · n⃗ = 0 ∀(x , y) ∈ ∂Ω,
• a null outgoing convective flux u⃗c∗ ·⃗n = 0 ∀(x , y) ∈ ∂Ω∩{(x , y)|⃗u(x , y , t)·⃗n > 0} ∀t ∈]0;T ]

with n⃗ the outgoing normal vector.

Let us note that by definition, the adjoint model is a linear model.1550

Computation of the gradient. By introducing the adjoint state as test function in the equation
(64), it returns that ∇s j satisfies the following equation:

(67) < ∇s j(s), δs >KT
=< ∇s jreg (s), δs >KT

− <

(
dB
ds

(s)

)∗
· c∗(c(s)), δs >VT

∀δs ∈ KT

with (dsB)∗ = Id for the differential operator B given by (60). Thus, it results the expression of
the gradient:

(68) ∇s j(s) = ∇s jreg (s) −
(
dB
ds

(s)

)∗
· c∗(c(s))

To estimate the gradient at each optimization iteration, it requires to solve in order the direct1555

model (1) and then the adjoint model (6).

One-sensor and trajectory-integrated one-sensor adjoint models. Recall that the one-sensor ad-
joint model is mostly obtained by splitting the observation operator c 7→ m(c) into the sum of
one-sensor observation operator m =

∑

i mi . By introducing this observation operator splitting
in the adjoint model (6), the adjoint model can be written the following way:1560

∂tc
∗+∇·(KT∇c∗)+∇(u⃗c∗)−(∇.⃗u)c∗−τlossc

∗ =
∑

i

∑

k

(
dmk

dc
(c(s))

)∗
·2R−1 ·

(

mi (c(s)) − mobs
i

)

Assuming that
(
dmk

dc
(c(s))

)∗
· 2R−1 ·

(

mi (c(s)) − mobs
i

)

= 0 for i ̸= k and as the left hand

side is linear with respect to c∗, the adjoint model written (B.3.1) can be split into the one-sensor
adjoint models (8). Let us note that, as mentioned in Sec. 2.2.3, the hypothesis
(
dmk

dc
(c(s))

)∗
· 2R−1 ·

(

mi (c(s)) − mobs
i

)

= 0 for i ̸= k is satisfied in our case if the sensors are

independent (R−1 is block-diagonal) and if two sensors are not located in the same place.1565

Recall from Sec. 2.2.3 that the resulting one-sensor adjoint state is the contribution of a sen-
sor to the gradient ∇s jobs .

In this study, the sequence (sj)j∈N given by the trajectory taken by the optimization algorithm
using different DA strategies are compared through one-sensor adjoint state-based criteria. The1570

main one-sensor adjoint state-based criteria used, introduced in Sec. 2.4.3, is the maximal total
contribution ∥∑j ηjc

∗
i (sj)∥L∞(Ω×[0,T ]), with (ηj)j∈N the sequence of the step sizes and c∗

i (sj) is
the solution of the one-sensor adjoint model:

∂tc
∗
i ,j + ∇ · (KT∇c∗

i ,j) + ∇(u⃗c∗
i ,j) − (∇.⃗u)c∗

i ,j − τlossc
∗
i ,j =

(
dcmi (c(sj))

)∗ · 2R−1
(

mi (c(sj)) − mobs
i

)

Thus, bymultiplyingwith the step size and summing over the sequences the previous one-sensor
adjoint model and due the linearity of the left hand side (that is always true by definition of the1575



adjoint model), c∗
i ,tot =

∑

j ηjc
∗
i (sj) is solution of the following trajectory-integrated one-sensor

adjoint model:

∂tc
∗
i ,tot + ∇ · (KT∇c∗

i ,tot) + ∇(u⃗c∗
i ,tot) − (∇.⃗u)c∗

i ,tot − τlossc
∗
i ,tot(69)

=
∑

j

(

ηj
(
dcmi (c(sj))

)∗ · 2R−1
(

mi (c(sj)) − mobs
i

))

This trajectory-integrated one-sensor adjoint model enable to compute the criteria without hav-
ing to compute c∗

i (sj) for each sj .
Let us note that, if the one-sensor observation operator c 7→ m is linear (which is the case in the1580

present study), the right hand side of the trajectory-integrated one-sensor adjoint model
RHS =

∑

j

(

ηj
(
dcmi (c(sj))

)∗ · 2R−1
(

mi (c(sj)) − mobs
i

))

becomes

RHS =
(
dcmi

)∗ · 2R−1 ·
(
∑

j ηj
(

mi (c(sj)) − mobs
i

))

.

Moreover, if the direct model is linear with respect to s (which is the case in the present
study), the right hand side of the trajectory-integrated one-sensor adjoint model even becomes1585

RHS =
(
dcmi

)∗ · 2R−1 ·
(

mi

(

c
(
∑

j ηjsj
))

−
(
∑

j ηj
)

mobs
i

)

.

B.3.2. Computation of the gradients ∇s jreg ,i . In this section, we calculate the gradient of the dif-
ferentiable regularization terms jreg ,i introduced in Sec. 3.1 and in Sec. B.2. Recall that ∇s is

the gradient operator with respect to s and ∇s jreg ,i (s) is the function given by djreg ,i (s)
ds

· δs =

⟨∇s jreg ,i (s), δs⟩ ∀δs .1590

Gradient of the Tikhonov regularization term. The gradient of the Tikhonov regularization term
(23), presented in Sec. 3.1.1 is simply:

∇s jreg ,T (s) = 2C−1(s − sb)

Gradient of the logarithmic barrier regularization term. The gradient of the logarithmic barrier reg-
ularization term (45), presented in Sec. B.2.1 is simply:

∇s jreg ,exc(s) =
2ϵ

ϵ − s2
1Ωexc

Gradient of thepopulationdynamics-informed regularization term. Recall that the population dynamics-
informed regularization term (27), presented in Sec. 3.1.3, can be written as:

jreg ,PD(s) = ∥∂ts − ∂tq

q
s + q∇

(
∑

i

Fi (s)

)

+ q
∑

i

Ri (s)∥2L2

= ⟨∂ts − ∂tq

q
s + q∇

(
∑

i

Fi (s)

)

+ q
∑

i

Ri (s), ∂ts − ∂tq

q
s + q∇

(
∑

i

Fi (s)

)

+ q
∑

i

Ri (s)⟩

and hence, its differentiable is

djreg ,PD(s)

ds
· δs = 2⟨∂ts − ∂tq

q
s + q∇

(
∑

i

Fi (s)

)

+ q
∑

i

Ri (s)

, ∂tδs − ∂tq

q
δs + q∇

(
∑

i

dFi (s)

ds
· δs

)

+ q
∑

i

dRi (s)

ds
· δs⟩

Hence djreg ,PD(s)
ds

· δs = ⟨∇s jreg ,PD(s), δs⟩ with :

∇s jreg ,PD(s) = 2

(

∂t − ∂tq

q
+ q

∑

i

d∇Fi (s)

ds
+ q

∑

i

dRi (s)

ds

)∗

·
(

∂ts − ∂tq

q
s + q∇

(
∑

i

Fi (s)

)

+ q
∑

i

Ri (s)

)



Recall that the adjoint operator is a linear operator: (F1 + F2)
∗ = F ∗

1 + F ∗
21595

We know have to calculate the adjoint operators (∂t − ∂tq
q
)∗,
(
d∇Fi (s)

ds

)∗
and

(
dRi (s)

ds

)∗
for the

Fi and Ri presented in Sec. 3.1.3 and in Sec. B.2.2. Let us note that no boundary conditions are
imposed in the estimation of the population dynamics model. Hence, all the boundary terms are
taken into account in the adjoint operators.

Temporal dynamics terms. Here, we calculate the operator (∂t − ∂tq
q
)∗. By applying the scalar

product with a test function φ, we have:

⟨∂tδs − ∂tq

q
δs,φ⟩ = ⟨−∂tφ − ∂tq

q
φ, δs⟩ +

∫

Ω
[φδs]t=T

t=0 dX

Therefore, the operator
(

∂t − ∂tq
q

)∗
is the operator such that1600

φ 7→ −∂tφ − ∂tq

q
φ ∀(x , y , t) ∈ Ω×]0;T [

for φ such that φ = 0 ∀(x , y , t) ∈ Ω × {0;T}

Diffusion term. Here, we calculate the operator
(
d∇Fi (s)

ds

)∗
for the diffusion operator Fi = Fd

(47). By applying the scalar product with a test function φ, we have:

⟨d∇Fd(s)

ds
· δs,φ⟩ = ⟨−∇ ·

(
1

q
σ∇δs

)

,φ⟩

= ⟨−∇ ·
(
1

q
σT∇φ

)

, δs⟩ +
∫ T

0

∫

∂Ω

(
1

q
σT∇φδs − 1

q
φσ∇δs

)

· n⃗dΓdt

Therefore, the operator
(
d∇Fd (s)

ds

)∗
is the operator such that

φ 7→ −∇ ·
(
1

q
σT∇φ

)

∀(x , y , t) ∈ Ω × [0;T ]

for φ such that
1

q
σT∇φ · n⃗ = 0 and φ = 0 ∀(x , y , t) ∈ ∂Ω × [0;T ]

Advection term. Here, we calculate the operator
(
d∇Fi (s)

ds

)∗
for the advection operator Fi = Fa

(48). By applying the scalar product with a test function φ, we have:1605

⟨d∇Fa(s)

ds
· δs,φ⟩ = ⟨∇ ·

(
1

q
v⃗iδs

)

,φ⟩

= ⟨∇ ·
(
1

q
v⃗i

)

φ − ∇ ·
(
1

q
v⃗iφ

)

, δs⟩ +
∫ T

0

∫

∂Ω

1

q
v⃗iφδs · n⃗dΓdt

Therefore, the operator
(
d∇Fa(s)

ds

)∗
is the operator such that

φ 7→ ∇ ·
(
1

q
v⃗i

)

φ − ∇ ·
(
1

q
v⃗iφ

)

∀(x , y , t) ∈ Ω × [0;T ]

for φ such that φ = 0 ∀(x , y , t) ∈ ∂Ω × [0;T ]



Quorum sensing term. Here, we calculate the operator
(
d∇Fi (s)

ds

)∗
for the quorum sensing opera-

tor Fi = Fqs (51). By applying the scalar product with a test function φ, we have:

⟨d∇Fqs(s)

ds
· δs,φ⟩ = ⟨−∇ ·

(
σqs

q2
(s∇δs + ∇sδs)

)

,φ⟩

=⟨−∇ ·
(

σqs

q2
(s∇φ − ∇sφ)

)

− ∇ ·
(

σqs

q2
∇s

)

φ, δs⟩

+

∫ T

0

∫

∂Ω

σqs

q2
(s∇φδs − sφ∇δs + ∇sφδs) · n⃗dΓdt

Therefore, the operator
(
d∇Fqs(s)

ds

)∗
is the operator such that

φ 7→ −∇ ·
(

σqs

q2
(s∇φ − ∇sφ)

)

− ∇ ·
(

σqs

q2
∇s

)

φ ∀(x , y , t) ∈ Ω × [0;T ]

for φ such that φ = 0 and
σqs

q2
s∇φ · n⃗ = 0 ∀(x , y , t) ∈ ∂Ω × [0;T ]

Non local pheromone sensing term. Here, we calculate the operator
(
d∇Fi (s)

ds

)∗
for the non-local1610

pheromone sensing operator Fi = Fnlps (52). By applying the scalar product with a test function
φ, we have:

⟨d∇Fnlps(s)

ds
· δs,φ⟩ = ⟨∇ ·

(
χ

q
(s∇(ggp ∗ δs) + ∇(ggp ∗ s)δs)

)

,φ⟩

=⟨gpg ∗ ∇ ·
(

χ

q
s∇φ

)

− ∇ ·
(

χ

q
∇(ggp ∗ s)φ

)

+ ∇ ·
(

χ

q
∇(ggp ∗ s)

)

φ, δs⟩

+

∫ T

0

∫

∂Ω

χ

q
(sφ∇(ggp ∗ δs) − s∇φ(ggp ∗ δs) + ∇(ggp ∗ s)φδs) · n⃗dΓdt

with gpg the function such that gpg (x , y , t) = gpg (−x ,−y ,−t). Therefore, the operator
(
d∇Fnlps(s)

ds

)∗

is the operator such that

φ 7→ gpg ∗ ∇ ·
(

χ

q
s∇φ

)

− ∇ ·
(

χ

q
∇(ggp ∗ s)φ

)

+ ∇ ·
(

χ

q
∇(ggp ∗ s)

)

φ ∀(x , y , t) ∈ Ω × [0;T ]

for φ such that φ = 0 and
χ

q
s∇φ · n⃗ = 0 ∀(x , y , t) ∈ ∂Ω × [0;T ]

Logistic term. Here, we calculate the operator
(
dRi (s)

ds

)∗
for the logistic operator Ri = Rl (53).1615

By applying the scalar product with a test function φ, we have:

⟨dRl(s)

ds
· δs,φ⟩ = ⟨ 1

q2
r

κ
(κq − 2s)δs,φ⟩

= ⟨ 1

q2
r

κ
(κq − 2s)φ, δs⟩

Therefore, the operator
(
dRl (s)

ds

)∗
is the operator such that

φ 7→ 1

q2
r

κ
(κq − 2s)φ ∀(x , y , t) ∈ Ω × [0;T ]

Allee effect term. Here, we calculate the operator
(
dRi (s)

ds

)∗
for the Allee effect operator Ri =

RAe (54). By applying the scalar product with a test function φ, we have:

⟨dRAe(s)

ds
· δs,φ⟩ = ⟨ 1

q3
r

κ+κ−
(−3s2 + 2q(κ+ + κ−)s − q2κ+κ−)δs,φ⟩

= ⟨ 1

q3
r

κ+κ−
(−3s2 + 2q(κ+ + κ−)s − q2κ+κ−)φ, δs⟩



Therefore, the operator
(
dRAe(s)

ds

)∗
is the operator such that1620

φ 7→ 1

q3
r

κ+κ−
(−3s2 + 2q(κ+ + κ−)s − q2κ+κ−)φ ∀(x , y , t) ∈ Ω × [0;T ]

B.3.3. On the proximal gradient algorithm for the LASSO regularization term. As mentioned in Sec.
3.1, if the regularization terms jreg are convex and differentiable, then the cost j is convex and dif-
ferentiable and the optimization problem (3) is solved using a gradient descent algorithm. How-
ever, as mentioned in Secs 3.1 and 3.1.2, the differentiable framework can be extended to a
non-smooth and subdifferentiable framework to consider LASSO-type regularization terms. In1625

this context, the gradient descent algorithm can be extended to the proximal-gradient algorithm,
also called the Forward-Backward algorithm.

In this section, the proximal-gradient algorithm is briefly presented in the context of the
optimization problem (3) with several jreg including the LASSO jreg (24) and group-LASSO jreg

(25).1630

The proximal-gradient algorithm, see e.g. (Parikh et al., 2014) is an extension of the gradient
descent algorithm used when the function to minimize can be split in j(s) = g(s) + h(s) with:

• g(s) a convex and differentiable function, which is in the present context the differen-
tiable part of j , i.e. the observation term jobs and the differentiable jreg ,

• h(s) a convex and subdifferentiable function, which is in the present case the LASSO or1635

group-LASSO jreg .

For such cost function, the optimum sa is a fixed point sa = proxλh(sa − λ∇g(sa)) with proxf the
proximal operator applied to the function f and λ > 0 the gradient descent step size.

The proximal-gradient algorithm is then a fixed point algorithm based on the iteration loop:

sk+1 = proxλh(sk − λ∇g(sk))

In the present case, the gradient ∇g is computed using the expression (7). For the LASSO
regularization term h = αreg ,LASSO jreg ,LASSO given by Eq. (24), the proximal operator proxλh is

proxλh(s) = sign(s)max(0, |s| − λαreg ,LASSO).

For the group-LASSO regularization term h = αreg ,gLASSO jreg ,gLASSO given by Eq. (25), the prox-
imal operator proxλh is

proxλh(s) = sign(s)max

(

0, 1 − λαreg ,gLASSO

∥s∥L2(0;T )

)

s

with ∥s∥L2(0;T ) =
(∫ T

0 s(t)2dt
)1/2

. As highlighted by the proximal operator proxλh, this algo-

rithm acts as an iterative soft-threshold, shrinking to 0 the value of s lower than the thresh-1640

old defined by λαreg ,LASSO for LASSO and the value of s at places where the total amount
∥s∥L2(0;T ) is lower than the threshold λαreg ,gLASSO for group-LASSO. Consequently, the adap-
tation of the proximal-gradient algorithm to the LASSO regularization term is commonly called
Iterative Shrinkage-Threshold Algorithm (ISTA).

B.4. Comparison of the LASSO and group-LASSO regularization terms in the Toy case1645

In this section, we briefly compare the LASSO (24) and group-LASSO (25) regularization
terms in the Toy case presented in Sec. 2.3.2. Recall that the effect of the LASSO regulariza-
tion term in the Toy case has already been highlighted in Sec. 3.4.



Figure 18 – Optimal sources estimated with different regularization terms.Optimal
quantity of pheromone emitted sa obtained by inference without regularization (left),
with the LASSO regularization (24) (centre) and with the group-LASSO regularization
(25) (right) for the Toy case. The optimal sources are indicated at t = 0.0s (upper row)
and t = 20.0s (lower row).

B.4.1. Visual comparison of estimated pheromone emissions sa. Recall that the LASSO regulariza-
tion (’LASSO’, centre of Fig. 18) implies that the retro-plume is less diffuse at both initial (t = 0s ,1650

top row) and final (t = 20s , bottom row) times. On the other hand, the group-LASSO (’group
LASSO’, right of Fig. 18) implies that the retro-plume is even less diffuse at initial time but more
diffuse at final time. This is due to the fact that the group-LASSO regularization aims to threshold
all the pheromone emissions at location where the total emissions are too low, unlike the LASSO
regularization that shrinks all pheromone emissions that are too low. To compensate these retro-1655

plumes less diffuse at initial time but more diffuse at final time, the pheromone emissions are
higher at initial time but lower at final time with the group-LASSO regularization than with the
LASSO regularization. Let us note that more spurious emissions far from the target support are
recovered with the group-LASSO regularization than with the LASSO regularization.

B.4.2. RMSE criteria. Recall that with the LASSO regularization (pink curves on Fig. 19), the total1660

error RxMSEtot is sensibly lower and the error on the target support RxMSEsupp similar to the
ones obtained without regularization (blue curve) at the beginning of the time window and up
to t ≈ 17.5s . After that time, with the LASSO regularization, both RxMSEtot and RxMSEsupp

significantly increase and become higher than without regularization. With the group-LASSO



Figure 19 – Evolution of total and support RMSE of sa against st . Time evolution of
the root space-mean square errors between the optimum sa obtained by inference with
several regularization strategies and the target st , on the whole domain (RxMSEtot , Eq.
(14), upper panel) and on the target support (RxMSEsupp , Eq. (15), lower panel) in the Toy
case: with no regularization term (no reg, blue), with the LASSO regularization term (24)
(LASSO, pink) and with the group-LASSO regularization term (25) (group LASSO, yellow)

regularization (yellow curves on Fig. 19), the errors follow similar trend but are nearly always1665

slightly lower. Let us note that, at the very beginning of the timewindow (between t = 0s and t =
2.5s),RxMSEsupp is higher with group-LASSO regularization thanwith LASSO regularization. This
comes from the fact that the group-LASSO regularization thresholds all the emissions, including
at the initial time, located at certain positions in the target supports.

B.4.3. Presence prediction, false discovery and miss rates. As already anticipated with the visual1670

comparison, the presence prediction (upper row of Fig. 20) is less diffuse at initial time, similarly
diffuse at middle time andmore diffuse at final timewith the group-LASSO regularization (yellow
curves) than with the LASSO regularization (pink curve). Recall the with the LASSO regulariza-
tion (pink curves), the miss rate ρfa and false discovery rate ρfp (bottom row of Fig. 20) are quite
stable until t ≈ 17.5s , time at which ρfa significantly increases. With the group-LASSO regular-1675

ization (yellow curves), the trend is very similar, but two little difference can be noted. First, as
observed on the errors, at the initial times, ρfa is slightly higher and ρfp is slightly lower with the
group-LASSO regularization than with the LASSO regularization.With the LASSO regularization,
ρfa is even null for a short amount of time, while it is always non-zero with the group-LASSO reg-
ularization. Also, one can note that ρfa significantly increases a bit later with the group-LASSO1680

regularization than with the LASSO regularization.



Figure 20 – Presence prediction and time evolution of false discovery and miss
rates.Prediction of insects presence with several regularization strategies: with no reg-
ularization term (no reg, blue), with the LASSO regularization term (24) (LASSO, pink)
and with the group-LASSO regularization term (25) (group LASSO, yellow). Top panel:
map of presence prediction at three different time. The presence is obtained from the
reconstructed source sa by computing a level set with Eq. (16). The true presence (i.e. the
target support) is indicated in black.
Lower panel. Time evolution of the miss rate ρfa (solid lines), see Eq. (17), and false dis-
covery rate ρfp (dashed lines), Eq. (18).
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