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Abstract17

Dispersal, and in particular the frequency of long-distance dispersal (LDD) events, has strong im-18

plications for population dynamics with possibly the acceleration of the colonisation front, and for19

evolution with possibly the conservation of genetic diversity along the colonised domain. How-20

ever, accurately inferring LDD is challenging as it requires both large-scale data and a method-21

ology that encompasses the redistribution of individuals in time and space. Here, we propose a22

mechanistic-statistical framework to estimate dispersal from one-dimensional invasions. The mech-23

anistic model takes into account population growth and grasps the diversity in dispersal processes24

by using either diffusion, leading to a reaction-diffusion (R.D.) formalism, or kernels, leading to an25

integro-differential (I.D.) formalism. The latter considers different dispersal kernels (e.g. Gaussian,26

Exponential, and Exponential-power) differing in their frequency of LDD events. The statistical27

model relies on dedicated observation laws that describe two types of samples, clumped or not.28

As such, we take into account the variability in both habitat suitability and occupancy perception.29

We first check the identifiability of the parameters and the confidence in the selection of the dis-30

persal process. We observed good identifiability for nearly all parameters (Correlation Coefficient31

> 0.95 between true and fitted values), except for occupancy perception (Correlation Coefficient32

= 0.83− 0.85). The dispersal process that is the most confidently identified is Exponential-Power33

(i.e. fat-tailed) kernel. We then applied our framework to data describing an annual invasion of34

the poplar rust disease along the Durance River valley over nearly 200 km. This spatio-temporal35

survey consisted of 12 study sites examined at seven time points. We confidently estimated that the36

dispersal of poplar rust is best described by an Exponential-power kernel with a mean dispersal dis-37

tance of 2.01 km and an exponent parameter of 0.24 characterising a fat-tailed kernel with frequent38
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LDD events. By considering the whole range of possible dispersal processes our method forms39

a robust inference framework. It can be employed for a variety of organisms, provided they are40

monitored in time and space along a one-dimension invasion.41
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1 Introduction42

Dispersal is key in ecology and evolutionary biology (Clobert et al., 2004). From an applied point43

of view, the knowledge of dispersal is of prime interest for designing ecological-based management44

strategies in a wide diversity of contexts ranging from the conservation of endangered species (e.g.,45

Macdonald and Johnson, 2001) to the mitigation of emerging epidemics (Dybiec et al., 2009; Fabre46

et al., 2021). From a theoretical point of view, the pattern and strength of dispersal sharply impact47

eco-evolutionary dynamics (i.e. the reciprocal interactions between ecological and evolutionary48

processes) (Miller et al., 2020). The features of dispersal have many implications for population49

dynamics (e.g. speed of invasion, metapopulation turnover; Soubeyrand et al., 2015; Kot et al.,50

1996), genetic structure (e.g. gene diversity, population differentiation; Edmonds et al., 2004; Fa-51

yard et al., 2009; Petit, 2011) and local adaptation (Gandon and Michalakis, 2002; Hallatschek and52

Fisher, 2014). Mathematically, the movement of dispersers (individuals, spores or propagules for53

example) can be described by a so-called location dispersal kernel (Nathan et al., 2012) that rep-54

resents the statistical distribution of the locations of the propagules of interest after dispersal from55

a source point. Since the pioneer works of Mollison (1977), much more attention has been paid to56

the fatness of the tail of the dispersal kernel (Klein et al., 2006). Short-tailed kernels (also referred57

to as thin-tailed) generate an invasion front of constant velocity, whereas long-tailed kernels (also58

referred to as fat-tailed) can cause an accelerating front of colonisation (Ferrandino, 1993; Kot et al.,59

1996; Clark et al., 2001; Mundt et al., 2009; Hallatschek and Fisher, 2014). Long-tailed kernels,60

characterised by more frequent long-distance dispersal (LDD) events than an exponential kernel61

that shares the same mean dispersal distance, can also cause a reshuffling of alleles along the col-62

onisation gradient, which prevents the erosion of genetic diversity (Nichols and Hewitt, 1994; Petit,63
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2004; Fayard et al., 2009) or leads to patchy population structures (Ibrahim et al., 1996; Bialozyt64

et al., 2006).65

Despite being a major issue in biology, properly characterising the dispersal kernels is a challen-66

ging task for many species, especially when dispersing individuals are numerous, small (and thus67

difficult to track) and move far away (Nathan, 2001). In that quest, mechanistic-statistical models68

enable a proper inference of dispersal using spatio-temporal datasets (Wikle, 2003a; Soubeyrand69

et al., 2009a; Roques et al., 2011; Soubeyrand and Roques, 2014; Hefley et al., 2017; Nembot70

Fomba et al., 2021) while allowing for the parsimonious representation of both growth and dispersal71

processes in heterogenous environments (Papaı̈x et al., 2022). They require detailed knowledge of72

the biology of the species of interest to properly model the invasion process. They combine a mech-73

anistic model describing the invasion process and a probabilistic model describing the observation74

process while enabling a proper inference using spatio-temporal data. Classically, the dynamics of75

large populations are well described by deterministic differential equations. Invasions have often76

been modelled through reaction-diffusion equations (Murray, 2002; Okubo and Levin, 2002; Shi-77

gesada and Kawasaki, 1997). In this setting, individuals are assumed to move randomly following78

trajectories modelled using a Brownian motion or a more general stochastic diffusion process. Des-79

pite their long standing history, the incorporation of reaction-diffusion equations into mechanistic-80

statistical approaches to estimate parameters of interest from spatio-temporal data essentially dates81

back to the early 2000s (e.g. Wikle, 2003a; Soubeyrand and Roques, 2014; Louvrier et al., 2020;82

Nembot Fomba et al., 2021). By contrast to reaction-diffusion equations, integro-differential equa-83

tions encode trajectories modelled by jump diffusion processes and rely on dispersal kernels, in-84

dividuals being redistributed according to the considered kernel (Fife, 1996; Hutson et al., 2003;85

Kolmogorov et al., 1937). This approach allows to consider a large variety of dispersal functions,86
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typically with either a short or a long tail (i.e. putative LDD events). As such it is more likely to87

model accurately the true organism’s dispersal process. In the presence of long-distance dispersal,88

the biological interpretation of the estimated diffusion parameters with an R.D. equation would be89

misleading. This approach allows to consider a large variety of dispersal functions, typically with90

either a short or a long tail (i.e. putative LDD events). As such it is more likely to model accurately91

the true organism’s dispersal process. In the presence of long-distance dispersal, the biological92

interpretation of the estimated diffusion parameters with an R.D. equation would be misleading.93

However, integro-differential equations are numerically more demanding to simulate than reaction-94

diffusion equations. As far as we know, integro-differential equations have rarely been embedded95

into mechanistic-statistical approaches to infer dispersal processes in ecology (but see Szymańska96

et al., 2021 for a recently proposed application of a non-local model to cell proliferation).97

98

Data acquisition is another challenge faced by biologists in the field, all the more that data con-99

fined to relatively small spatial scales can blur the precise estimates of the shape of the kernels100

tail (Ferrandino, 1996; Kuparinen et al., 2007; Rieux et al., 2014). To gather as much information101

as possible, it is mandatory to collect data over a wide range of putative population sizes (from102

absence to near saturation) along the region of interest. Sharing the sampling effort between raw103

and refined samples to browse through the propagation front may improve the inference of spatial104

ecological processes (Gotway and Young, 2002). This way of sampling is all the more interesting105

as the probabilistic model describing the observation process in the mechanistic-statistical approach106

can handle such multiple datasets (Wikle, 2003b). However, inference based on multi-type data107

remains a challenging statistical issue as the observation variables describing each data type follow108

different distribution laws (Chagneau et al., 2011) and can be correlated or, more generally, depend-109
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ent because they are governed by the same underlying dynamics (Bourgeois et al., 2012; Georgescu110

et al., 2014; Soubeyrand et al., 2018). This requires a careful definition of the conditional links111

between the observed variables and the model parameters (the so-called observation laws) in order112

to identify and examine complementarity and possible redundancy between data types.113

114

In this article, we aim to provide a sound and unified inferential framework to estimate dispersal115

from ecological invasion data using both reaction-diffusion and integro-differential equations. We116

first define the two classes of mechanistic invasion models, establish the observation laws corres-117

ponding to raw and refined samplings, and propose a maximum-likelihood method to estimate their118

parameters within the same inferential framework. Then, to confirm that each model parameter119

can indeed be efficiently estimated given the amount of data at hand (see Soubeyrand and Roques,120

2014), we perform a simulation study to check model parameters’ identifiability given the sampling121

design. We also aim to assess the confidence level in the choice of the dispersal function as derived122

by model selection. Last, the inferential framework is applied to original ecological data describing123

the annual invasion of a tree pathogen (Melampsora larici-populina, a fungal species responsible124

for the poplar rust disease) along the riparian stands of wild poplars bordering the Durance River125

valley in the French Alps (Xhaard et al., 2012).126
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2 Modelling one-dimensional invasion and observation processes127

2.1 A class of deterministic and mechanistic invasion models128

We model the dynamics of a population density u(t,x) at any time t and point x during an invasion129

using two types of spatially heterogeneous deterministic models allowing to represent a wide range130

of dispersal processes. Specifically, we considered a reaction-diffusion model (R.D.) and an integro-131

differential model (I.D.):132

R.D.


∂tu(t,x) = D∂xxu(t,x)+ r(x)u(t,x)

(
1− u(t,x)

K

)
,

u(0,x) = u0(x),

I.D.


∂tu(t,x) =

∫ R

−R
J(x− y)[u(t,y)−u(t,x)]dy+ r(x)u(t,x)

(
1− u(t,x)

K

)
,

u(0,x) = u0(x).

133

134

where t varies in [0,T ] (i.e. the study period) and x varies in [−R,R] (i.e. the study domain). Both135

equations exhibit the same structure composed of a diffusion/dispersal component and a reaction136

component. The reaction component, r(x)u(t,x)
(

1− u(t,x)
K

)
in both equations, is parameterised137

by a spatial growth rate r(x) that takes into account macro-scale variations of the factors regulat-138

ing the population density and K the carrying capacity of the environment. It models population139

growth. The diffusion/dispersal component models population movements either by a diffusion140

process (D∂xxu in R.D.) parameterised by the diffusion coefficient D or by a dispersal kernel (J in141

I.D.). To cover a large spectrum of possible dispersal processes, we use the following parametric142

form for the kernel J:143

J :=
τ

2αΓ
(1

τ

)e−|
z
α |

τ

(1)

with mean dispersal distance λ := α
Γ
(2

τ

)
Γ
(1

τ

) . Varying the value of τ leads to the kernels classically144

used in dispersal studies. Specifically, J can be a Gaussian kernel (τ = 2,λ = α/
√

π), an exponen-145
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tial kernel (τ = 1,λ = α) or a fat-tail kernel (τ < 1,λ = αΓ

(
2
τ

)
/Γ

(
1
τ

)
). Explicit formulas for146

the solution u(t,x) of these reaction-diffusion/dispersal equations being out of reach, we compute a147

numerical approximation unum of u, which serves as a surrogate for the real solution. Details of the148

numerical scheme used to compute unum can be found in Appendix S1.149

2.2 A conditional stochastic model to handle micro-scale fluctuations150

Among the factors driving population dynamics, some are structured at large spatial scales (macro-151

scale) and others at local scales (micro-scale). It is worth considering both scales when studying152

biological invasions. In the model just introduced, the term r(x) describes factors impacting pop-153

ulation growth rate at the macro-scale along the whole spatial domain considered. Accordingly,154

the function u(t,x) is a mean-field approximation of the true population density at macro-scale.155

Furthermore, the population density can fluctuate due to micro-scale variations of other factors reg-156

ulating population densities locally (e.g. because of variations in the micro-climate and the host157

susceptibility). Such local fluctuations are accounted for by a conditional probability distribution158

on u(t,x), the macro-scale population density, which depends on the (unobserved) suitability of the159

habitat unit as follow. Consider a habitat unit i whose centroid is located at xi, and suppose that the160

habitat unit is small enough to reasonably assume that u(t,x) = u(t,xi) for every location x in the161

habitat unit. Let Ni(t) denote the number of individuals in i at time t. The conditional distribution162

of Ni(t) is modelled by a Poisson distribution:163

Ni(t) | u(t,xi),Ri(t)∼ Poisson(u(t,xi)Ri(t)), (2)
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where Ri(t) is the intrinsic propensity of the habitat unit i to be occupied by individuals of the164

population at time t. Thereafter, Ri(t) is called habitat suitability and takes into account factors like165

the exposure and the favorability of habitat unit i. The suitability of habitat unit i is a random effect166

(unobserved variable) and is assumed to follow a Gamma distribution with shape parameter σ−2
167

and scale parameter σ2:168

Ri(t)∼ Gamma(σ−2,σ2). (3)

This parametrisation implies that the mean and variance of Ri(t) are 1 and σ2, respectively; that the169

conditional mean and variance of Ni(t) given u(t,xi) are u(t,xi) and u(t,xi)+ u(t,xi)
2σ2, respect-170

ively; and that its conditional distribution is:171

Ni(t) | u(t,xi)∼ Negative-Binomial
(

σ
−2,

u(t,xi)σ
2

1+u(t,xi)σ2

)
. (4)

2.3 Multi-type sampling and models for the observation processes172

During an invasion, the population density may range from zero (beyond the front) to the maximum173

carrying capacity of the habitat. To optimise the sampling effort, it may be relevant to carry out174

different sampling procedures depending on the population density at the sampling sites. In this175

article, we consider a two-stage sampling made of one raw sampling, which is systematic and one176

optional refined sampling adapted to our case study, the downstream spread of a fungal pathogen177

along a river (Figure 1). We consider that the habitat unit is a leaf. The fungal population is178

monitored in sampling sites s ∈ {1, . . . ,S} and at sampling times t ∈ {t1, . . . , tK}. Sampling sites are179

assumed to be small with respect to the study region, and the duration for collecting one sample180

is assumed to be short with respect to the study period. Thus, the (macro-scale) density of the181
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population at sampling time t in sampling site s is constant and equal to u(t,zs) where zs is the182

centroid of the sampling site s. Any sampling site s is assumed to contain a large number of leaves183

which are, as a consequence of the assumptions made above, all associated with the same population184

density function: u(t,xi)= u(t,zs) for all leaves i within sampling site s. Each observed tree and twig185

are assumed to be observed only once during the sampling period. Therefore, habitat suitabilities186

Ri(t) are considered independent in time.187

The raw sampling is focused on trees, considered as a group of independent leaves regarding188

their suitabilities. This assumption can be made if the leaves observed on the same tree are suffi-189

ciently far from each other and represent a large variety of environmental conditions, and therefore190

habitat suitabilities (for example, leaves observed all around a tree will not have the same sun ex-191

position, nor the same humidity depending on their height and their relative positions to the trunk).192

In each sampling site s and at each sampling time t, a number Bst of trees isare monitored for the193

presence of infection. We count the number of infected trees Yst among the total number Bst of194

observed trees. In the simulations and the case study tackled below, the random variables Yst given195

u(t,xs) are independent and distributed under the conditional Binomial distribution f raw
st described196

in Appendix S2.2. Its success probability depends on the variabilities of (i) the biological process197

through the variance parameter σ2 of habitat suitabilities, and (ii) the observation process through198

a parameter γ . This parameter describes how the probabilities of leaf infection perceived by the199

person in charge of the sampling differ between trees from true probabilities (as informed by the200

mechanistic model). Such differences may be due, for example, to the specific configuration of the201

canopy of each tree or to particular lighting conditions.202

The refined sampling is focused on twigs, considered as a group of connected leaves. Nearby203

leaves often encounter the same environmental conditions and, therefore, are characterised by sim-204
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ilar habitat suitabilities represented by Ri(t); see Equations (2–3). This spatial dependence was205

taken into account by assuming that the leaves of the same twig (considered as a small group of206

spatially connected leaves) share the same leaf suitability. Accordingly, suitabilities are considered207

as shared random effects. The refined sampling is performed depending on disease prevalence and208

available time. In site s at time t, Gst twigs are collected. For each twig g, the total number of209

leaves Mstg and the number of infected leaves Ystg are counted. In the simulations and the case210

study tackled below, the random variables Ystg given u(t,xs) are independent and distributed under211

conditional probability distributions denoted by f ref
st described in Appendix S2.3. The distribution212

f ref
st is a new mixture distribution (called Gamma-Binomial distribution) obtained using Equations213

(2–3) and taking into account the spatial dependence and the variance parameter of unobserved214

suitabilities (see Appendix S2.3).215

This sampling scheme and its vocabulary (leaves, twigs and trees) isare specifically adapted to216

our case study for the sake of clarity. However, a wide variety of multi-type sampling strategies can217

be defined and implemented in the model, as long as it fits a two-stage sampling as presented in218

Figure 1.219

2.4 Coupling the mechanistic and observation models220

The submodels of the population dynamics and the observation processes described above can be221

coupled to obtain a mechanistic-statistical model (also called physical-statistical model; Berliner,222

2003; Soubeyrand et al., 2009b) representing the data and depending on dynamical parameters,223

namely the growth and dispersal parameters. The likelihood of this mechanistic-statistical model224
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can be written:225

L(θ) =
S

∏
s=1

tK

∏
t=t1

 f raw
st (Yst)

(
Gst

∏
g=1

f ref
st (Ystg)

)1(Yst>ȳ)
 , (5)

where 1(·) denotes the indicator function and expressions of f raw
st and f ref

st adapted to the case study226

tackled below are given by Equations (S14) and (S18) in Appendix S2. The power 1(Yst > ȳ) equals227

to 1 if Yst > ȳ and 0 otherwise, implies that the product ∏
Gst
g=1 f ref

st (Ystg) only appears if the refined228

sampling is carried out in site s. Moreover, such a product expression for the likelihood is achieved229

by assuming that leaves in the raw sampling and those in the refined sampling are not sampled from230

the same trees. If this does not hold, then an asymptotic assumption like the one in Appendix S2.2231

can be made to obtain Equation (5), or the dependence of the unobserved suitabilities must be taken232

into account and another likelihood expression must be derived.233

3 Parameter estimation and model selection234

We performed simulations to check the practical identifiability of several scenarios of biological235

invasions. Invasion scenarios represent a wide range of possible states of nature regarding the236

dispersal process, the environmental heterogeneity at macro-scale, and the intensity of local fluctu-237

ations at micro-scale. Even though the simulations are designed to cope with the structure of our238

real data set (Appendix S4), the results enable some generic insights to be gained. Specifically, we239

considered six sampling dates evenly distributed in time and 12 samplings sites evenly distributed240

within the 1D spatial domain. For each pair (date, site), we simulated the raw sampling of 100 trees241

and the refined sampling of 20 twigs. For the fifth sampling date, the raw sampling was densified242

with 45 sampling sites instead of 12.243
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The simulation study explored four hypotheses for the dispersal process: three I.D. hypotheses244

with kernels JExp, JGauss and JExpP and the R.D. hypothesis. Hypotheses JExp and JGauss state that245

individuals dispersed according to Exponential and Gaussian kernels, respectively, with parameter246

θJ = (λ ). Hypothesis JExpP states that individuals dispersed according to a fat-tail Exponential-247

power kernel with parameters θJ = (λ ,τ) and τ < 1. Finally, hypothesis R.D. states that individual248

dispersal is a diffusion process parameterised by θJ = (λ ). The parameter λ represents the mean249

distance travelled whatever the dispersal hypothesis considered. Moreover, macro-scale environ-250

mental heterogeneity was accounted for in the simulations by varying the intrinsic growth rate of251

the pathogen population (r) in space. Specifically, along the one-dimensional domain, we con-252

sidered two values of r, namely a downstream value rdw and an upstream value rup, parameterised253

by θr = (rdw,ω) such that rup = rdweω . Finally, micro-scale heterogeneity was accounted for in254

the simulations by varying the parameter of leaf suitability σ2 and tree perception γ . Thereafter,255

θ = (θr,θJ,γ,σ
2) denotes the vector of model parameters.256

3.1 Accurate inference of model parameters257

To assess the estimation method and check if real data that were collected are informative enough258

to efficiently estimate the parameters of the models (the so-called practical identifiability), we pro-259

ceeded in three steps for each dispersal hypothesis: (i) a set of parameter values θ = (θr,θJ,γ,σ
2)260

is randomly drawn from a distribution that encompasses a large diversity of realistic invasions, (ii)261

a data set with a structure similar to our real sampling is simulated given θ and (iii) θ is estimated262

using the maximum-likelihood method applied to the simulated data set. These steps were repeated263

n = 100 times. Details on the simulation procedure, the conditions used to generate realistic inva-264
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sions, and on the estimation algorithm are provided in Appendix S4.1. Practical identifiability was265

tested by means of correlation coefficients between the true and estimated parameter values (see266

Table 1, Appendix S2: Figures S2, S3, S4, S5).267

All the parameters defining the macro-scale mechanistic invasion model (rdw, ω , λ ) display very268

good practical identifiability whatever the model, with correlation coefficients above 0.93. In the269

case of the Exponential-power dispersal kernel, the additional parameter representing the tail of the270

distribution (τ) also displays a very good practical identifiability with a correlation coefficient of271

0.95. The parameter defining the micro-scale fluctuations, σ2, leads to particularly high correlation272

coefficients (0.99 for all the models). The identifiability for the perception parameter γ related to273

the observation process is somewhat lower (from 0.83 to 0.85).274

3.2 Confidence in the selection of the dispersal process275

Numerical simulations were next designed to test whether model selection could disentangle the276

true dispersal process (i.e. the dispersal hypothesis used to simulate the data set) from alternative277

dispersal processes (Appendix S4.2). The model selection procedure is efficient for the dispersal278

hypotheses Exponential-power JExpP, Exponential JExp, and reaction-diffusion R.D., with 70%, 62%279

and 58% of correct kernel selection, respectively (Table 2). When the fat-tail Exponential-power280

kernel is not correctly identified, it is mostly mistaken with the Exponential one (for 20% of the281

simulations). In line with this, the probability of correctly selecting the kernel JExpP decreases when282

the parameter τ increases towards 1, the value for which the Exponential-power kernel coincides283

with the Exponential kernel (Figure 2). Importantly, when the Exponential-power kernel is correctly284

selected, we observe a large difference between its AIC and the AIC of the second best model (89.62285
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points on average). Conversely, when the invasion process is simulated under JExpP, but another286

kernel is selected, we observe a very small AIC difference (0.38 point on average). Model selection287

does not allow to correctly select the Gaussian kernel JGauss (Table 2). Indeed, with only 26% of288

correct model selection, this kernel is not better identified than with a random draw of one of the289

four models, which would lead to 25% of correct estimations. Its correct identification is greatly290

improved by densifying the sampling scheme (Appendix S4.5: Table S2). Finally, note that when291

the invasion process is simulated under model R.D. or JGauss, a short-tail kernel is always selected292

and, thus, never confounded with the fat-tail kernel JExpP.293

4 Case study: Invasion of poplar rust along the Durance River294

valley295

4.1 Study site296

We applied our approach to infer the dispersal of the plant pathogen fungus Melampsora larici-297

populina, responsible for the poplar rust disease, from the monitoring of an epidemic invading the298

Durance River valley. Embanked in the French Alps, the Durance River valley constitutes a one-299

dimension ecological corridor whichthat channels annual epidemics of the poplar rust pathogen300

M. larici-populina (Xhaard et al., 2012). Each year the fungus has to reproduce on larches (Larix301

decidua) that are located in the upstream part of the valley only. This constitutes the starting point302

of the annual epidemics. Then the fungus switches to poplar leaves and performs several rounds of303

infection until leaf-fall. Each infected leaf produces thousands of spores that are wind-dispersed. In304

our case study, u(t,xs) is the density of fungal infection at time t at point x on a poplar leaf. Each305
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leaf has a carrying capacity of 750 fungal infections (Appendix S5).306

All along the valley, the Durance River is bordered by a nearly continuous riparian forest of307

wild poplars (Populus nigra). The annual epidemic on poplars thus spreads downstream through the308

riparian stands, mimicking a one-dimension biological invasion (Xhaard et al., 2012). A previous309

genetic study showed that the epidemic was indeed initiated in an upstream location where poplars310

and larches coexist (Prelles), and progresses along the valley (Becheler et al., 2016). In fallautumn,311

the corridor is cleared for disease after leaf-fall. At 62 km downstream of the starting point of the312

epidemics, the Serre-Ponçon dam represents a shift point in the valley topology, with a steed-sided313

valley upstream and a larger riparian zone downstream. This delimitation led us to consider 2 values314

of growth rates r along the one-dimensional domain: rup and rdw (see Appendix S4 for details).315

4.2 Monitoring of an annual epidemic wave316

In 2008, rust incidence was monitored every three weeks from July to November at 12 sites evenly317

distributed along the valley (Figure 3). Sites were inspected during seven rounds of surveys. For a318

unique date (Oct. 22), the raw sampling was densified with 45 sites monitored instead of 12. We319

focused on young poplar trees (up to 2m high) growing on the stands by the riverside.320

Two monitorings were conducted, corresponding to the raw and refined sampling, as described321

in previous sections. For the raw sampling, we prospected each site at each date to search for rust322

disease by inspecting randomly distributed poplar trees (different trees at different dates for a given323

site). Depending on rust incidence and poplar tree accessibility, 40 to 150 trees (mean 74) were324

checked for disease. Each tree was inspected through a global scan of the leaves on different twigs325

until at least one infected leaf was found or after 30 s of inspection. The tree was denoted infected326
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or healthy, respectively. This survey method amounts to minutely inspecting 10 leaves per tree,327

i.e. with the same efficiency of disease detection as through the refined sampling (see details of the328

statistical procedure in Appendix S3). The global scan procedure of the trees leads to equivalently329

surveying fewer and fewer leaves as the epidemic progresses. Optionally, when at least one tree330

was infected, and depending on available time, we carried out a refined sampling to collect more331

information on the variance in disease susceptibility (i.e. habitat suitability) among the sampling332

domain. The refined sampling consisted in randomly sampling 20 twigs on different trees and333

recording, for each, the total number of leaves and the number of infected leaves.334

4.3 Dispersal and demographic processes ruling the epidemic wave335

Model selection was used to decipher which dispersal process was best supported by the data set336

for five initial conditionsparameter values. The large AIC difference in favour of hypothesis JExpP337

indicates that poplar rust propagules assuredly disperse according to an exponential-power dispersal338

kernel along the Durance River valley (Table 3). Note that for all kernels, the five initial con-339

ditionsparameter values lead to similar estimations. Under the R.D. hypothesis, however, initial340

conditionsparameter values can lead to different estimations because of local optima, but all AIC341

resulting from the R.D. hypothesis are higher than AIC resulting from the three dispersal kernels.342

The estimation of the parameters for the best model along with their confidence intervals (Ap-343

pendix S4.3) are summarised in Table 4. The parameters of the Exponential-power kernel firstly344

indicate that the mean distance travelled by rust spores is estimated at 2.01 km. Second, its mean345

exponent parameter τ is 0.24. This value, much lower than 1, suggests substantial long-distance346

dispersal events. We also estimated the growth rates of the poplar rust epidemics along the Durance347
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River valley. From upstream to downstream, their mean estimates are 0.084 and 0.020, respectively.348

The estimate of the parameter of the observation model, γ , is 5.21. This parameter represents how349

perceived probabilities of leaf infection differ among trees from true probabilities. The estimated350

value of 5.21 indicates some variability in the perception of infected leaves, but this variability351

is moderate because the shape of the underlying Beta-Binomial distribution approaches the Bino-352

mial distribution (for which perception differences are absent) (Figure 4, row 1). By contrast, the353

estimated value of the micro-scale fluctuation variance σ2 (1.09) suggests a substantial variabil-354

ity in leaf suitability between twigs. This is evidenced by comparing the shape of the estimated355

Gamma-Binomial distribution with a situation with negligible differences in receptivity between356

twigs (Figure 4, row 2, case σ2 = 0.01).357

Model check consists in testing whether the selected model was indeed able –given the para-358

meter values inferred above– to reproduce the observed data describing the epidemic wave that359

invaded the Durance River valley in 2008. To do so, we assessed the coverage rate of the raw360

sampling data (proportions of infected trees) based on their 95%-confidence intervals (Appendix361

S4.4, Figure 5). Over all sampling dates, the meantotal coverage rate is high (0.75), which indicates362

that the model indeed captures a large part of the strong variability of the data. By comparison,363

coverage rates given by models JExp and JGauss (0.69 and 0.67, respectively) show a poorer fit to364

the data, especially for the first sampling date (Figures S6, S7) where the epidemic intensity is365

underestimated upstream and overestimated downstream.366
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5 Discussion367

This study combines mechanistic and statistical modelling to jointly infer the demographic and dis-368

persal parameters underlying a biological invasion. A strength of the mechanistic model was to369

combine population growth with a large diversity of dispersal processes. The mechanistic model370

was coupled to a sound statistical model that considers different types of count data. These ob-371

servation laws consider that habitat suitability and disease perception can vary over the sampling372

domain. Simulations were designed to prove that the demographic model can be confidently selec-373

ted and its parameter values reliably inferred. Although the framework is generic, it was tuned to fit374

the annual spread of the poplar rust fungus M. larici-populina along the Durance River valley. This375

valley channels every year the spread of an epidemic along a one-dimensional corridor of nearly376

200 km (Xhaard et al., 2012; Becheler et al., 2016). The monitoring we performed enables to build377

a comprehensive data set at a large spatial scale, which is mandatory to precisely infer the shape of378

the tail of dispersal kernels (Ferrandino, 1996; Kuparinen et al., 2007). A widely used alternative to379

the mechanistic-statistical approaches is to consider purely correlative approaches. However, the es-380

timated parameters defining the strength of the temporal and spatial dependencies (as estimated for381

example using R-INLA package approach, Rue et al., 2009) will not allow to distinguish between382

the different shapes of dispersal kernels, which was the main goal of our work.383

5.1 Estimation of the dispersal kernel of the poplar rust384

This study provides the first reliable estimation of the dispersal kernel of the poplar rust fungus.385

Dispersal kernels are firstly defined by their scale, which can be taken to correspond to the mean386

dispersal distance. The mean dispersal distance obtained from the best model is 2.01 km with a387
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95% confidence interval ranging from 1.76 to 2.27 km. A non-systematic literature review iden-388

tified only eight studies reporting dispersal kernels for plant pathogens that used data gathered in389

experimental designs extending over regions bigger than 1 km (Fabre et al., 2021). The mean dis-390

persal distances of the four fungal pathosystems listed by these authors are 213 m for the ascospores391

of Mycosphaerella fijiensis (Rieux et al., 2014), 490 m for the ascospores of Leptosphaeria macu-392

lans (Bousset et al., 2015), 860 m for Podosphaera plantaginis (Soubeyrand et al., 2009a) and from393

1380 to 2560 m for Hymenoscyphus fraxineus (Grosdidier et al., 2018). Our estimates for poplar394

rust are in the same range as the one obtained at regional scale for Hymenoscyphus fraxineus, the395

causal agent of Chalara ash dieback (Grosdidier et al., 2018).396

397

Dispersal kernels can be further defined by their shape. We show that the spread of poplar398

rust is best described by a fat-tailed Exponential-power kernel. The thin-tailed kernels considered399

(Gaussian and exponential kernels) were clearly rejected by model selection. These results are in400

accordance with the high dispersal ability and the long-distance dispersal events evidenced in this401

species by population genetics analyses (Barrès et al., 2008; Becheler et al., 2016). Rust fungi are402

well-known to be wind dispersed over long distances (Brown and Hovmøller, 2002; Aylor, 2003).403

Recently, Severns et al. (2019) gathered experimental and simulation evidence that supports that404

wheat stripe rust spread supports theoretical scaling relationships from power law properties, an-405

other family of fat-tail dispersal kernel. In fact, many aerially dispersed pathogens are likely to406

display frequent long-distance flights as soon as their propagules (spores, insect vectors) escape407

from plant canopy into turbulent air layer (Ferrandino, 1993; Pan et al., 2010). Accordingly, four408

of these eight studies listed by Fabre et al. (2021) lent support to fat-tailed kernels, including plant409

pathogens as diverse as viruses, fungi, and oomycetes.410
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411

5.2 Effect of fat-tailed dispersal kernels on eco-evolutionary dynamics412

The dynamics produced by the mechanistic integro-differencial models we use strongly depends413

on the tail of the dispersal kernel. Namely, when the equation is homogeneous (i.e. when the414

model parameters do not vary in space, leading to r(x) = r), it is well known that for any thin-tailed415

dispersal kernel J such that
∫
R

J(z)eλ |z|dz <+∞ for some λ > 0, the dynamics of u(t,x) is well416

explained using a particular solution called travelling wave. In this case, the invading front described417

by the solution u(t,x) moves at a constant speed (Aronson and Weinberger, 1978). By contrast, for a418

fat-tailed kernel, these particular solutions do not exist anymore, and the dynamic of u(t,x) describes419

an accelerated invasion process (Medlock and Kot, 2003; Garnier, 2011; Bouin et al., 2018). Here,420

we show that the dynamics of the poplar rust is better described as an accelerated invasion process421

rather than a front moving at a constant speed. Such accelerating wave at the epidemic front has422

been identified for several fungal plant pathogens dispersed by wind, including Puccinia striiformis423

and Phytophthora infestans the wheat stripe rust and the potato late blight, respectively (Mundt424

et al., 2009). However, it should be stated that fat-tailed kernels are not always associated with425

accelerated invasion processes. Indeed, fat-tailed kernels can be further distinguished depending on426

whether they are regularly varying (e.g. power law kernels) or rapidly varying (e.g. Exponential-427

power kernels) (Klein et al., 2006). Mathematically, it implies that power law kernels decrease428

even more slowly than any Exponential-power function. Biologically, fat-tailed Exponential-power429

kernels display rarer long-distance dispersal events than power law kernels. On the theoretical430

side, the kernel’s properties subtly interact with demographic mechanisms such as Allee effects431
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to possibly cancel the acceleration of invasion. With weak Allee effects (i.e. the growth rate is432

density dependent but still positive), no acceleration occurs with rapidly varying kernels whereas an433

acceleration could be observed for some regularly varying kernels, depending on the strength of the434

density dependence (Alfaro and Coville, 2017; Bouin et al., 2021). For strong Allee effects (i.e. a435

negative growth rate at low density), no acceleration can be observed for all possible kernels (Chen,436

1997). On the applied side, whether or not the epidemic wave is accelerating sharply impacts the437

control strategies of plant pathogens (Filipe et al., 2012; Ojiambo et al., 2015; Fabre et al., 2021).438

5.3 Confidence in the inference of the dispersal process439

The inference framework we developed is reasonably efficient in estimating the dispersal process440

with frequent long-distance dispersal events as generated by Exponential-power dispersal kernels.441

The numerical experiments clearly show that the lower the exponent parameter τ of the Exponential-442

power kernel, the higher the confidence in its selection.443

Conversely, the identification of the dispersal process is less accurate with the Gaussian ker-444

nelthin-tail kernels. The requirement for improving the capacity to distinguish between thin-tail445

kernels may lie in the sampling scheme. Here, our sampling sites are regularly spaced, over a large446

sampling domain of 200 km, which is better suited to monitor long-distance dispersal (Kuparinen447

et al., 2007). Sampling schemes with more frequent data in both time and space (or nested spatial448

sampling) might improve kernel identification. Its correct identification requires densifying the449

sampling.450

We clearly observed that integro-differential models with Gaussian dispersal kernel on the one451

hand and reaction-diffusion equation on the other hand are well identified with our estimation pro-452
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cedure when the time and space sampling is dense enough. This result may at first appear strik-453

ing as a common belief tends to consider that diffusion amounts to a Gaussian dispersal kernel.454

However, these two models represent different movement processes (Othmer et al., 1988). In ad-455

dition, classical macroscopic diffusion, which is mainly based on Brownian motion (Othmer et al.,456

1988), often ignores the inherent variability among individuals’ capacity of movements and as a457

consequence does not accurately describe the dispersal of a heterogeneous populationat the popula-458

tion scale (Hapca et al., 2009). While it is reasonable to assume that a single individual disperses via459

Brownian motion, this assumption hardly extends to all individuals in the population. Accordingly,460

we believe that integro-differential models are better suited to take into account inter-individual461

behaviour as the dispersal kernel explicitly models the redistribution of individuals.462

5.4 Robustness and portability of the method463

A strength of the approach proposed is the detailed description of the observation laws in the stat-464

istical model. The derivation of their probability density functions allows to obtain an analytical465

expression of the likelihood function. Model inference was however not straightforward due to466

local optimum issues. In order to achieve satisfying computational efficiency, we developed an ad467

hoc hybrid strategy initiated from 20 initial values and combining the two classical Nelder-Mead468

and Nlminb optimisation algorithms. However, the framework of hierarchical statistical models469

(Cressie et al., 2009), whose inference is often facilitated by Bayesian approaches, could likely be470

mobilised to improve model fit. In particular, although the coverage rate of the tree sampling was471

correct, it could be further improved by relaxing some hypotheses. The orange-coloured uredinia472

being easily seen on green leaves, we assumed that the persons in charge of the sampling perfectly473
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detect the disease as soon as a single uredinia is present on a leaf. However, even in this context,474

observation errors are likely present in our dataset as in any large spatio-temporal study. The latent475

variables used in hierarchical models are best suited to handle the fact that a tree observed to be476

healthy can actually be infected. False detection of infection could also be taken into account. This477

could make sense as a sister species, M. alli-populina, not easily discernible from M. larici-populina478

in the field, can also infect poplar leaves. This species can predominate locally in the downstream479

part of the Durance River valley. This could have led to over-estimate the disease severity at some480

locations. Yet, all infected leaves from twigs were collected and minutely inspected in the lab under481

a Stereo Microscope (25 magnification) to check for species identification.482

More generally, the statistical part of the mechanistic-statistical approaches developed could be483

transposed to a wide range of organisms and sampling types. Sharing the sampling effort between484

raw and refined samples improves the estimations. The two distinct types of sampling (sampling of485

random leaves in trees, and of leaves grouped within twigs) apply to a wide range of species, which486

local distribution is aggregated into patches randomly scattered across a study site. Any biological487

system study with two such distinct sampling types (as described in Figure 1) would fit the proposed488

statistical model. , all the more that o One can for example scale up the sampling by considering489

the plant (instead of the leaf) as the basic unit. Moreover, the framework naturally copes with the490

diversity of sampling schemes on the ground such as the absence of one sample type for all or part491

of the sampled sites and dates. Finally, we used the first sampling date to estimate independently492

the initial population densities u(0,x) that were then fixed among all simulated epidemics. Future493

works could as well jointly estimate u(0,x) as part of θ .494

The mechanistic part of the model could also handle a wider diversity of hypotheses. First, the495

model can be adapted to take into account a wider range of dispersal kernels, such as regularly496
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varying kernels (see above). Second, the model can also easily be adapted to take into account497

parameter heterogeneity in time and space discontinuities of its parameters. TypicallySimilarly,498

one may easily assume that the growth rate depends on daily meteorological variables. Finally, we499

ignore the influence of the local fluctuations of the population size on the macro-scale density of500

the population when stochastic fluctuations can influence epidemic dynamics (Rohani et al., 2002).501

Here, we neglect this influence by considering that the average population size is relevant when502

habitat units are aggregated. Relaxing this hypothesis could be achieved by incorporating stochastic503

integro-differential equations. The inference of such models is currently a front of research.504

5.5 Future directions505

As biological invasions are regularly observed retrospectively, carrying out spatio-temporal monit-506

oring is often highly difficult, when possible. A small number of longitudinal temporal data makes507

model inference very difficult, in particular for its propensity to properly disentangle the effect508

of growth rate and dispersal. Incorporating genetic data into the framework proposed here is a509

challenge that must be met to get around this problem. Indeed, colonisation and demographic ef-510

fects such as Allee effect generate their own specific genetic signatures (Dennis, 1989; Lewis and511

Kareiva, 1993; Miller et al., 2020). Similarly, genetic data could help to identify the dispersal kernel512

underlying the invasion process. Indeed, as the population will exhibit an erosion of its neutral di-513

versity with a thin-tailed kernel (Edmonds et al., 2004; Hallatschek et al., 2007). Conversely, genetic514

diversity can be preserved all along the invasion front with a fat-tailed kernel, because of the long-515

distance dispersal of individuals from the back of the front, where genetic diversity is conserved516

(Fayard et al., 2009; Bonnefon et al., 2014).517
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Marçais for fruitful discussions on disease monitoring, Bénédicte Fabre for the calculus of the dens-522

ity in uredinia on a poplar leaf, and Fabrice Elegbede for advices on statistical analyses. This work523

was supported by grants from the French National Research Agency (ANR-09-BLAN-0145, EMILE524

project; ANR-18-CE32-0001, CLONIX2D project; ANR-14-CE25-0013, project NONLOCAL,525

ANR-11-LABX-0002-01, Cluster of Excellence ARBRE; 20-PCPA-0002, BEYOND project). Con-526

stance Xhaard was supported by a PhD fellowship from the French Ministry of Education and527

Research (MESR) and by Postdoc fellowship from the French National Research Agency (ANR-528
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Coville, Frédéric Fabre, Fabien Halkett, and Samuel Soubeyrand conceived and designed the study.533
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Tables734

Table 1: Model practical identifiability. Numbers indicate the coefficient of correlation between

the true and estimated parameter values for the four models corresponding to the four dispersal

processes (JExp, JGauss, JExpP and R.D.) from 100 replicates. High correlation between true and

estimated parameters indicates a good practical identifiability. The standard deviations of the coef-

ficients of correlation, estimated with a bootstrapping method, are indicated in brackets. Correlation

coefficients and standard deviations are given for natural scale for parameter ω , and logarithm scales

for parameters rdw, γ , λ , τ , and σ2.

Parameter Description JExp JGauss JExpP R.D.
rdw Growth rate downstream 0.99(1.10−3) 0.99(1.10−3) 0.99(2.10−3) 0.93(6.10−2)
ω Growth rate modulator 0.99(< 10−3) 0.99(< 10−3) 0.99(1.10−3) 0.99(1.10−3)
λ Mean dispersal distance 0.99(5.10−3) 0.98(8.10−3) 0.99(1.10−3) 0.95(2.10−2)
τ Kernel exponent NA NA 0.95(1.10−2) NA

γ Tree perception 0.85(4.10−2) 0.83(4.10−2) 0.83(5.10−2) 0.84(3.10−2)
σ2 Variance in leaf suitability 0.99(1.10−3) 0.99(< 10−3) 0.99(< 10−3) 0.99(< 10−3)
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Table 2: Efficiency of model selection using Akaike information criterion (AIC). The four first

columns indicate the proportion of cases, among 50 replicates, where each tested model was selected

using AIC, given that data sets were generated under a particular model (i.e. true model). Column

dAICtrue (resp. dAICwrong) indicates the mean difference between the AIC of the model selected

when the model selected is the true one (resp. when the model selected is not the true model) and

the second best model (resp. being the true model or not).

Selected Model
JExp JGauss JExpP R.D. dAICtrue dAICwrong

True Model
JExp 0.62 0.22 0.06 0.10 0.84 0.74

JGauss 0.34 0.26 0.00 0.40 1.08 0.55
JExpP 0.20 0.04 0.70 0.06 89.62 0.38
R.D. 0.18 0.24 0.00 0.58 0.71 0.23
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Table 3: Model selection for the epidemic of poplar rust along the Durance River valley. The Akaike

information criteria are indicated for each model fitted to the real data set. The model best supported

by the data is indicated in bold. AICmedian and AICsd represent the median and standard deviation

among the AIC obtained from five initial conditionsparameter values.

Dispersal AICmedian AICsd
JExp 5476 0.68

JGauss 5510 1.03
JExpP 5179 1.32
R.D. 6303 655.60
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Table 4: Statistical summary of the inference of the parameters for the model best supported by

the real data set JExpP. We used the vector of parameters θ giving the lowest AIC value in the

previous model selection procedure as initial conditionsparameter values of the R function mle2, to

obtain maximum likelihood estimates of the vector of parameters θ̂ and of its matrix of variance-

covariance ∑̂. Summary statistics were derived from 1,000 random draws from the multivariate

normal distribution with parameters θ̂ and ∑̂ (see Appendix S4.3). Columns Estimate, q− 2.5%

and q−97.5% represent the estimated value of each parameter and the quantiles 2.5% and 97.5%,

respectively.

Parameter Description q−2.5% Estimate q−97.5%
rup Growth rate upstream 0.0312 0.0844 0.191
rdw Growth rate downstream 0.0114 0.0203 0.0289
λ Mean dispersal distance 1.76 2.01 2.03
τ Kernel exponent 0.220 0.242 0.263
γ Tree perception 3.21 5.21 6.77

σ2 Variance in leaf suitability 0.987 1.09 1.21
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Figures735

Figure 1: Two-stage sampling on a sampling site, with one systematic raw sampling (on the left)
and one optional refined sampling (on the right). Each square represent a leaf, which can be non
infected, infected but not detected, or infected and detected. Each group of spatially grouped leaves
represent a tree. Each tree already observed during the raw sampling are not available (and thus
represented in grey) for the refined sampling, where connected leaves in twigs are observed.
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Figure 2: Logistic regression of the proportion of correct model selection of dispersal JExpP as a
function of τ . Dots represent the values of τ used for the 50 replicates of simulated dispersal model
JExpP, and the estimated dispersal model (1 for a correct model selection of JExpP and 0 for a wrong
model selection). The blue line corresponds to the predicted value of the proportion of correct
model selection JExpP as a function of τ , and the grey area corresponds to the confidence envelope
at 95%.
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Figure 3: Poplar rust epidemic wave along the Durance River valley in 2008. The larch distribution
area is represented in dark green, wild poplar riparian stands in pale green. The 12 study sites are
represented by the green squares. Orange dots describe the evolution of the poplar rust epidemic
through time (7 rounds of disease notation) and space (12 studied sites). Dot size is proportional to
rust disease incidence assessed from the refined sampling.
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Figure 4: Distributions of the number of infected leaves in a tree and of the number of infected
leaves in a twig, for increasing densities of infection u(t,x), and contrasted levels of environmental
heterogeneity σ2 and γ . The number of infected leaves in a tree follows a Beta-Binomial distribu-
tion (Eq. (S12)) with σ2 = 1.09. Its density is plotted for three tree perceptions γ: 5.21 (estimated
value on the real data set), 10 (intermediate value) and 60 for which the Beta-Binomial distribu-
tion is approaching a Binomial distribution. The number of infected leaves in a twig follows a
Gamma-Binomial distribution (Eq. (S18)). Its density is plotted for three leaf suitabilities σ2: 1.09
(estimated value on the real data set), 5 (a higher value) and 0.01 a value lowering variability in leaf
suitability between twigs (when σ2 tends to 0, all twigs share the same leaf suitability).
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Sampling 2, July 28
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Sampling 3, Aug. 21
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Sampling 4, Sept. 9
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Sampling 5, Oct. 1st
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Sampling 6, Oct. 22
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Sampling 7, Nov. 13

Figure 5: Model check under the selected dispersal model JExpP: Coverage rates for the raw
sampling. Each sampling date is represented on a separate graph. Sampling 1 is not represen-
ted because it corresponds to the initial condition of the epidemics for all simulations. Blue areas
correspond to the pointwise 95% confidence envelopes for the proportion of infected trees, grey
intervals correspond to the 95% prediction intervals at each site, i.e. taking into account the obser-
vation laws given the proportion of infected trees. Red points correspond to the observed data. Only
four observations are available for sampling 7 because at this date (November 13) the leaves had
already fallen from the trees located upstream the valley. The total coverage rate over all sampling
dates is 0.75.
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S1 Numerical scheme

We use an implicit Euler scheme combined with a finite difference scheme (see Allaire, 2005 for

details) to compute the solution u(t,x) of the reaction-diffusion equation over [−R,R]× [0,T ], with

2×R the length of the modelled environment, and T the duration of the modelled process. For

the integro-differential equation, we use an explicit Euler scheme. More precisely, we perform a

standard explicit Euler time discretisation of the equation:

∂u
∂ t

(t,x)≈ u(t +δ ,x)−u(t,x)
δ

(S1)

that leads to:

u(tn+1,x) = u(tn,x)+δ

(∫ R

−R
J(x− y)[u(tn,y)−u(tn,x)]dy

)
+δ r(x)u(tn,x)

(
1− u(tn,x)

K

) (S2)

where {tn = nδ = nT/N : n = 0, . . . ,N} is a series of increasing times separated by δ = T/N > 0,

and N is the number of time steps in the series. For the space discretisation, we define a regular grid

{xi =−R+ iε =−R+2Ri/I : i = 0, . . . , I} with I +1 points separated by ε = 2R/I > 0. We make

the following approximation for all x in [−R,R]:

u(tn,x)≈
I

∑
i=0

u(tn,xi)1[xi,xi+ε)(x) (S3)

where x 7→ 1[xi,xi+ε)(x) is the indicator function that gives 1 if x ∈ [xi,xi+ε), 0 otherwise. Based on

this approximation, we only need to compute u(t,x) at points xi, i = 0, . . . , I. Plugging Approxima-
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tion (S3) in the integral of Equation (S2) computed for x = xi yields:

∫ R

−R
J(xi− y)[u(tn,y)−u(tn,xi)]dy

≈
∫ R

−R
J(xi− y)

[(
I

∑
j=0

u(tn,x j)1[x j,x j+ε)(y)

)
−u(tn,xi)

]
dy

=

(
I

∑
j=0

u(tn,x j)
∫ R

−R
J(xi− y)1[x j,x j+ε](y)dy

)
−
(

u(tn,xi)
∫ R

−R
J(xi− y)dy

)

≈ ε

(
I

∑
j=0

u(tn,x j)J(xi− x j)

)
− ε u(tn,xi)

I

∑
j=0

J(xi− x j)

(S4)

Let us define the matrix Jin := (J(xi− x j))0≤i, j≤I whose element (i, j) is Jin
i j = J(xi− x j). We

get the following numerical scheme:

u(tn+1,xi) = u(tn,xi)+δε

[
I

∑
j=0

Jin
i ju(tn,x j)−u(tn,xi)

(
I

∑
j=0

Jin
i j

)]

+δ r(xi)u(tn,xi)

[
1− u(tn,xi)

K

] (S5)

By defining the vectors U(tn) = (u(tn,xi))0≤i≤I , R = (r(xi))0≤i≤I and 1 = (1)0≤i≤I , we have to

solve the linear system:

U(tn+1) = U(tn)+δε
{

JinU(tn)−U(tn) · (Jin1)
}
+δ{R ·U(tn)} ·

{(
1− U(tn)

K

)}
(S6)

where · is the element-wise multiplication operator.
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S2 Distributions of the population measurements

S2.1 Term designations for the sampling units

In our biological application, a poplar leaf represents a habitat unit, a twig represents a group of

habitat units, and a tree represents a habitat bloc. For clarity, we refer to leaves, twigs and trees

in the following explanations. We call a sampling site a surveyed area along the valley, containing

several hundreds of trees. Further adaptations of this model to other sampling units would only

require adapting this initial vocabulary (Figure 1).

S2.2 Raw sampling

In the raw sampling, trees represent the sampling units, and Bst trees are observed in site s at time

t. For each tree b ∈ {1, . . . ,Bst}, we measure the presence/absence of the pathogen by monitoring

an equivalent number of M leaves within b (see Appendix S3 below for the determination of M). A

tree is infected if at least one pathogen lesion has been detected, in at least one leaf of the tree. The

observation in site s at time t is the number Yst of infected trees.

Now, let us derive the probabilistic law of the presence/absence of the pathogen in any tree

b observed in site s at time t. In this paragraph, subscripts s, t, and b are generally omitted to

avoid cumbersome notation. We first remind that the numbers of pathogen lesions Ni(t) in the leaf

i ∈ {1, . . . ,M} observed in tree b, given Ri(t) and u(t,xs), are independent and Poisson distributed

(see Eq. (2) in the main text):

Ni(t) | u(t,xs),Ri(t) ∼
indep.

Poisson(u(t,xs)Ri(t)) (S7)
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In the raw sampling, M leaves are sampled at different locations on the tree (i.e. they belong to

different groups, referred to as twigs), but further information about the twigs is not known. Thus,

in the following, we take into account the twig structure without exploiting twig information. The

leaves of a given twig g on tree b share at time t the same suitability Rg(t), which is unobserved and

Gamma distributed like in Eq. (3) in the main text (for all leaves i in twig g, Ri(t) = Rg(t)). Given

the suitabilities {Rg(t) : g = 1, . . . ,G} of twigs which compose tree b and given the absence of data

about the twigs, Ri(t) (i ∈ {1, . . . ,M}) are independent and identically distributed under the discrete

empirical probability distribution:

F̂G(r) =
1
G

G

∑
g=1

1(r ≤ Rg(t)) (S8)

where 1(·) is the indicator function. Therefore, Ni(t) (i ∈ {1, . . . ,M}) given {Rg(t) : g = 1, . . . ,G}

and u(t,xs) are independent and their probability distribution is, using Eqs. (S7)–(S8):

P[Ni(t) = n | u(t,xs),{Rg(t) : g = 1, . . . ,G}] = 1
G

G

∑
g=1

exp(−u(t,xs)Rg(t))
(−u(t,xs)Rg(t))n

n!
(S9)

The suitability Rg(t) being Gamma distributed with shape and scale parameters σ−2 and σ2, re-

spectively, the right-hand-side of Eq. (S9) is a Monte Carlo approximation of the integral:

∫
R+

exp(−u(t,xs)r)
(−u(t,xs)r)n

n!
1

(σ2)σ−2
Γ(σ−2)

rσ−2−1e−r/σ2
dr

=
Γ(n+σ−2)

(n!)Γ(σ−2)

(
1− u(t,xs)

u(t,xs)+σ−2

)σ−2(
u(t,xs)

u(t,xs)+σ−2

)n
(S10)

which coincides with the probability distribution of the Negative–Binomial law (i.e. the Gamma-

Poisson mixture distribution) given by Eq. (4) in the main text. The larger G, the more precise the
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approximation. Consequently, Ni(t) (i ∈ {1, . . . ,M}) given u(t,xs) are asymptotically independent

and distributed under the Negative–Binomial distribution given by Eq. (4) in the main text. Based

on this approximation, the infections of leaves from tree b in site s at time t are asymptotically

independent and distributed under Bernoulli distributions with success probability:

pleaf
st = P(Ni(t)> 0 | u(t,xs))

= 1−P(Ni(t) = 0 | u(t,xs))

= 1− (1+u(t,xs))
−1/σ2

(S11)

The people who carried out the sampling observed a number M of leaves on tree b. Due to the

particular configuration of the foliage of each tree, we assumed that the number Y leaf
stb of infected

leaves among the M leaves observed in tree b is approximately distributed under a Beta-Binomial

distribution with mean Mpleaf
st and tree perception parameter γ:

Y leaf
stb | u(t,xs)∼approx. Beta-Binomial(M, pleaf

st ,γ) (S12)

Accordingly, the probability, as perceived by people in charge of the sampling, of leaf infection

on the set of M leaves observed on a given tree, is distributed according to a Beta distribution. The

Beta distribution is centred around the true probability of leaf infection pleaf
st and allows perceived

probability to vary from tree to tree depending on the tree perception parameter γ . It follows that

the infection of tree b is approximately distributed under the Bernoulli distribution with success
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probability:

ptree
st = P(Y leaf

stb > 0 | u(t,xs))

= 1−P(Y leaf
stb = 0 | u(t,xs))

= 1− Beta[γ pleaf
st ,M+ γ(1− pleaf

st )]

Beta[γ pleaf
st ,γ(1− pleaf

st )]

(S13)

where pleaf
st is given by S11 and Beta represents the beta function. It follows that the probability

distribution functions of the number Y tree
st of infected trees infected among the Bst trees observed

satisfy, for all sampling sites s and sampling times t:

f raw
st (y) = P[Y tree

st = y | u(t,xs)]

= fBinomial(Bst ,ptree
st )(y)

(S14)

where fBinomial is the density of the Binomial distribution.

S2.3 Refined sampling

In the refined sampling, Gst twigs (i.e. groups of spatially connected leaves) are sampled in site s

at time t. Here, the twig information (the number of twigs and the distribution of leaves on twigs)

are known but the suitability Rg(t) of leaves in a twig g remains unobserved. The numbers of

pathogen lesions Ni(t) in the observed leaves i ∈ {1, . . . ,Mstg} of twig g given Rg(t) and u(t,xs) are

independent and Poisson distributed:

Ni(t) | u(t,xs),Rg(t) ∼
indep.

Poisson(u(t,xs)Rg(t)) (S15)
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Then, the numbers of infected leaves Y leaf
stg (i.e. leaves with at least one pathogen lesion) given Rg(t)

and u(t,xs) are independent and distributed under the following Binomial distributions:

Y leaf
stg | u(t,xs),Rg(t) ∼

indep.
Binomial(Mstg,1− e−u(t,xs)Rg(t)) (S16)

In addition,

u(t,xs)Rg(t) | u(t,xs) ∼
indep.

Gamma(σ−2,u(t,xs)σ
2) (S17)

Using Eqs. (S15)–(S17), Y leaf
stg given u(t,xs) are independent and follow Gamma-Binomial mixture

distributions:

f ref
st (y) = P[Y leaf

stg = y | u(t,xs)]

=
∫

∞

0
fBinomial(Mstg,1−e−z)(y) fGamma(σ−2,u(t,xs)σ2)(z)dz

(S18)

where fGamma is the density of the Gamma distribution. Note that this Gamma-Binomial mixture

distribution is an over-dispersed Binomial distribution like the Beta-Binomial distribution.
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S3 Estimation of the number of leaves efficiently observed dur-

ing tree scans

A problem inherent to the raw sampling design is that we do not know the number of leaves observed

during the scan of the trees, contrary to the twig data for which we counted both the number of

infected leaves and the total number of leaves carried by each observed twig. In other words, an

inspected tree is a set of leaves of unknown size.

We assumes in Eq. (S12) that the number Y leaf
stb of infected leaves among the M leaves observed

in tree b is approximately distributed under a Beta-Binomial distribution with mean Mpleaf
st and tree

perception parameter γ . Parameter γ is however an unknown parameter. To overcome this parameter

when calculating the average number of leaves observed per tree, we use the fact that on average

the number of infected leaves is the same with a binomial distribution:

Y leaf
stb | u(t,xs)∼approx. Binomial(M, pleaf

st ) (S19)

From this distribution, we obtain at each site s and date t the probability ptree
st that a tree is

infected as a function of both the probability pleaf
st that a leaf is infected and the number M of leaves
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observed on a tree:

ptree
st = P(Y leaf

stb > 0 | u(t,xs))

= 1−P(Y leaf
stb = 0 | u(t,xs))

= 1− (1− pleaf
st )M

(S20)

Thus, the number of leaves on a tree satisfies:

M =
log(1− ptree

st )

log(1− pleaf
st )

(S21)

Let us use as approximations of ptree
st the observed proportions qtree

st of infected trees at sites s and

dates t, and as approximations of pleaf
st the observed proportions qleaf

st of infected leaves (calculated

from twig data). Then, an estimate λ̂M of the mean number of leaves λM by tree is given by:

λ̂M = round

(
1
N

N

∑
i=1

log(1−qtree
st )

log(1−qleaf
st )

)
(S22)

with N the number of pairs (s, t) (i.e. sampling sites and dates) displaying both tree and twig data.

Proportions of infection qtree
st = 1 and qleaf

st = 1 where approximated to 1− 10−16 for numerical

considerations. This procedure led to λ̂M = 10. This value may appear low. However, λM does not

correspond to the actual mean number of leaves carried by an entire young tree but amounts to the

mean number of leaves effectively inspected during tree scan, i.e. those observed as minutely as for

the twig data in a limited time (see Eq. (S13)). It is important to note that for each tree the tree

scan stops when an infected leaf is observed, or after 30 s of inspection. Therefore, the number of
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inspected leaves per tree can be very low in highly infected sites.

For the practical identifiability studies, we set λM = 10. For parameter inference on the real data

set a different value of (λ̂M)t was estimated for each sampling date, from the observed proportions

qtree
st of infected trees and the observed proportions qleaf

st of infected leaves at date t (Table S1).

Table S1: Estimated number of leaves effectively observed per tree for each sampling date t, (λ̂M)t .
The values of (λ̂M)t were used in the application on the real data set.

Date t (λ̂M)t
1 40
2 24
3 6
4 3
5 5
6 1
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S4 Simulation details

Computations were performed with the R software environment (R Core Team, 2018). The initial

vector of initial population densities u(0,x) for x over [−R,R] was estimated from the data of the

first sampling date, by fitting a general model for analysis of dose-response data (package Drc on R,

Ritz et al., 2015). This initial vector of initial population densities represented the initial condition

of all simulations. We modelled N = 1500 time steps and I = 400 points in space. Because of the

numerical scheme, with these parameters the reaction-diffusion dispersal model R.D. required an

upper limit for parameter λ : we set λup = 23 for this model.

To fit our real case study, for all simulations we set R = 100 km, for a 200 km long river valley,

and the epidemic was monitored over T = 150 days. We considered a shift in the environment

topology at d = 0.31% of the valley, which corresponds to the delimitation observed in the Durance

River valley with the Serre-Ponçon dam at 62 km downstream of the starting point of the epidemic.

Therefore, for all simulations, the two growth rates rup and rdw apply to continuous segments of

proportions d and 1−d of the monitored space, respectively.

S4.1 Practical parameter identifiability

Simulations were performed as follows in three steps.

Step 1 : Simulation of a realistic epidemic. Given a hypothetical dispersal model (JExp, JGauss, JExpP

or R.D.), values in the parameter vector θ = (θr,θJ,γ,σ
2) are independently and randomly drawn

from dedicated distributions encompassing a large diversity of invading scenarios and specified in

Table S1. We then simulate the corresponding epidemic along the 1D spatial domain [−R,R]. This

epidemic is considered ‘realistic’ if a set of requirements on the observed proportion of infected
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trees Ps,t on the farther downstream site (s = R) is met:

• PR,30 < 0.1 (the proportion of infected trees after one month is lower than 10%);

• PR,75 < 0.5 (the proportion of infected trees after two and a half months is lower than 50%);

• PR,150 > 0.1 (the proportion of infected trees after five months is higher than 10%);

• PR,150 < 0.8 (the proportion of infected trees after five months is lower than 80%).

Step 1 is complete once a candidate vector θ leads to an epidemic satisfying the four conditions

described above (i.e. the simulation of θ and the epidemic is repeated while the four conditions are

not satisfied). Thereafter, the vector finally retained in Step 1 is denoted θtrue.

Table S1: Marginal distributions used to randomly sample the model parameters included in θ =
(θr,θJ,γ,σ

2) before checking the requirements detailed in Step 1, with θr = (rdw,ω) and θJ = (λ )
or θJ = (λ ,τ) depending on the model.

Parameter Distribution Interval
rdw Log-Uniform [0.01, 0.5]
ω Uniform [-2, 3]
λ Log-Uniform [0.2,5]
τ Log-Uniform [0.2,1]
γ Log-Uniform [2,20]

σ2 Log-Uniform [0.01, 15]

Step 2 : Simulation of the sampling process. We consider a sampling design similar to our real

experiment with six sampling dates and 12 sampling locations regularly spread over 150 days and

200 km, respectively (R = 100 km). As for our real data, we increase the location density for the

fifth date, with 45 locations instead of 12. For each date and location, the raw sampling consists in

simulating the observed sanitary status of 10 leaves per tree from 100 trees, and the refined sampling

consists in simulating the observed sanitary status of 25 spatially connected leaves from 20 twigs,
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the simulations being performed given θtrue. The resulting data set is denoted Dtrue.

Step 3 : Parameter estimation. We use the data Dtrue to estimate the model parameters by minimiz-

ing the logarithm of the likelihood function L(θ). In our case, preliminary tests revealed that clas-

sical optimisation algorithms were not accurate enough to provide satisfactory rates of convergence

due to local optimum problems. Thus, we adopt a hybrid strategy combining first a Nelder-Mead

algorithm (improving global search ability) and then a Nlminb algorithm (for its high computational

efficiency). Specifically, we proceed in three substeps described below, the crucial stage consisting

in finding initial values that give a satisfactory rate of convergence.

Step 3.1 : Using Step 1, we generate 500 vectors θinit. Note that this step was only performed once

for all the estimations performed in this article. We provide in Figure S1 a comparison of the initial

distribution of parameters as stated in Table S1, and of the distribution of parameters in the vector

θinit, i.e. leading to “realistic” epidemics.

Step 3.2 : The corresponding 500 likelihood values L(θinit) are calculated given Dtrue. Then, the

20 vectors θinit corresponding to the 20 largest likelihood values are used as initial values for 50

steps of a NELDER-MEAD optimisation routine (R function optim), resulting in 20 updated ini-

tial parameter vectors θinit2 depending on Dtrue. The new initial vectors θinit2 that do not satisfy

lower bounds θlow and upper bounds θup are excluded. We used θlow = (rdw = 0.001,ω =−7,λ =

0.02,τ = 0.02,γ = 1.05,σ2 = 10−7) and θup = (rdw = 0.5,ω = 3,λ = 10,τ = 1,γ = 30,σ2 = 20),

with λ = 23 in θup instead of 10 for the R.D. model. The validity intervals defined by θlow and

θup encompass the intervals used to simulate θ (see Table S1). The likelihood values of the ninit
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remaining vectors L(θinit2) are calculated (given Dtrue) and ranked in descending order.

Step 3.3 : θ is then estimated using the NLMINB optimisation routine with lower and upper

bounds θlow and θup, respectively. The initial conditionsparameter values are set to the first vec-

tor θinit2 as ordered in the previous step. The estimated parameter values, say θestim, are accepted

if the nlminb function in R delivered a successful convergence diagnostic (with tunning parameters

rel.tol=5.10−5 and iter.max=3000). If not, the second vector θinit2 is used, and so on until

reaching convergence or testing the ninit initial vector’s values selected at step 3.2. In the latter case,

a convergence failure is obtained. Overall, this algorithm allows to obtain high rates of convergence.

These three steps were reiterated until deriving the estimation of n = 100 realistic epidemics for

each dispersal model. Checking for practical identifiability of parameters basically relies on plotting

for each dispersal model the cloud of points between θtrue and θestim (Figures S2, S3, S4, S5) and

computing the corresponding correlations. Among all simulations performed, the proportions of

convergence were 0.91, 0.95, 0.93, and 0.90 for dispersal JExp, JGauss, JExpP, and R.D., respectively.

A simulation converged when the convergence diagnostic of the algorithm indicated a convergence,

and when all parameters were estimated inside intervals defined by θlow and θup. In the small

number of simulations where the value of λestim proposed by the optimisation algorithm was higher

than 23 (which is the upper limit of our numerical scheme, Appendix S1), the simulation was still

considered convergent with λestim = 23. This configuration can occur in particular when trying to

fit dispersal R.D. on datasets simulated according to JExpP.
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Figure S1: Distributions of parameters, before (in dotted black) and after (in red) retaining only
parameters values leading to “realistic” epidemics. Dotted black distributions correspond to distri-
butions given by Table S1. Red line distributions correspond to the distribution of parameters in
θinit. We represent here the distribution of “realistic” epidemics from the four hypothetical dispersal
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and for JExp, JGauss and JExpP for parameter λ .
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Figure S2: Practical parameter identifiability for the dispersal model JExp. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
graph regroups the results of 100 replicates. Straight lines correspond to the first bisector.
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Figure S3: Practical parameter identifiability for the dispersal model JGauss. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
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Figure S4: Practical parameter identifiability for the dispersal model JExpP. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
graph regroups the results of 100 replicates. Straight lines correspond to the first bisector.
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Figure S5: Practical parameter identifiability for the dispersal model R.D. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
graph regroups the results of 100 replicates. Straight lines correspond to the first bisector.
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S4.2 Model selection

Model practical identifiability was carried out in a similar way than parameter practical identifiab-

ility (Appendix S4.1), except that we fitted to each data set the true model (as previously) but also

the three other models corresponding to the alternative hypotheses on the dispersal process. Models

were compared using AIC (Akaike Information Criteria) to select the best data-supported model.

AIC were assessed as 2k−2ln(L) where k is the number of parameters of the model considered and

L is the maximized value of the likelihood function. To gain more insights into the confidence level

in model selection, we also calculated for each data set the difference between the AIC of the model

selected and the AIC of the second-best model according to the two possible issues of the selection

procedure: (i) when the model selection procedure was successful (i.e. the selected model was the

true model) and (ii) when the model selection procedure was incorrect (i.e. the true model was not

selected). The mean of these values were reported as dAICtrue and dAICwrong in Table 2. The steps

were reiterated until the estimation of n = 50 realistic epidemics for each dispersal model.

S4.3 Parameter inference on the real data set

The model selection procedure was applied to the real data set by fitting four dispersal process

hypotheses (JExp, JGauss, JExpP and R.D.). The same optimisation routines described in Appendix

S4.1 were performed from five initial conditionsparameter values selected as in Step 3.2 (Appendix

S4.1). The selected model corresponds to hypothesis JExpP. For parameter estimations, we used the

mle2 function from the R package bbmle, with method NELDER-MEAD and optimizer NLMINB, to

obtain maximum likelihood estimates of the vector of parameters θ̂ and of its matrix of variance-

covariance ∑̂. We used as initial conditionsparameter values the vector of parameters θ giving the
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lowest AIC value in the previous model selection procedure. Confidence intervals were derived

from 1,000 random draws from the multivariate normal distribution with parameters θ̂ and ∑̂. The

95% confidence intervals of each parameter is obtained using the quantiles 2.5% and 97.5% (Table

4).

S4.4 Model check

The model was checked by assessing the coverage rate of the data from the 95%-prediction intervals.

The coverage rate was estimated as the proportion of observed data from the raw sampling within

the prediction intervals (Figure 5).

Data from the raw sampling represent 97 counts Yst of infected trees at sites s ∈ {1, . . . ,S} (with

S = 12 or S = 45 depending on the sampling date) and times t ∈ {1, . . . ,6}. Let us recall that, as

stated in Appendix S2, Yst follows a combination of Poisson and Beta-Binomial distributions whose

parameters depend on the known mean value (λm)t and the unknown u(t,xs), γ and σ2, and that

u(t,xs) is a deterministic function of dynamical parameters r, λ and τ .

Prediction intervals were calculated at each date and each site with a two-step procedure:

Step 1 A confidence interval was obtained from 1000 random draws from the multivariate normal

distribution with θ̂ and ∑̂.

Step 2 The mean proportions of infected trees were calculated at each date and site date from each

random draw of parameters obtained from Step 1. A prediction interval was obtained from these

parameters given the probabilities of infection, with 1,000 random draws in the observation laws.

Model checks were performed for each dispersal kernel model, and not only the selected model

JExpP, to ensure that the coverage rates were higher with the selected model (Figure 5 for the selected
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dispersal model JExpP, and Figures S6 and S7 for dispersal models JExp and JGauss, respectively). The

model check was not performed for dispersal model R.D. because the estimated dispersal distance

λestim reached the upper limit of our numerical scheme λup = 23 and did not allow to calculate the

confidence intervals.
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Figure S6: Model check under the dispersal model JExp: Coverage rates for the raw sampling.
Each sampling date is represented on a separate graph. Sampling 1 is not represented because it
corresponds to the initial condition of the epidemics for all simulations. Blue areas correspond to the
pointwise 95% confidence envelopes for the proportion of infected trees, grey intervals correspond
to the 95% prediction intervals at each site, i.e. taking into account the observation laws given the
proportion of infected trees. Red points correspond to the observed data. Only four observations
are available for sampling 7 because at this date (November 13) the leaves had already fallen from
the trees located upstream the valley. The total coverage rate over all sampling dates is 0.69.
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Figure S7: Model check under the dispersal model JGauss: Coverage rates for the raw sampling.
Each sampling date is represented on a separate graph. Sampling 1 is not represented because it
corresponds to the initial condition of the epidemics for all simulations. Blue areas correspond to the
pointwise 95% confidence envelopes for the proportion of infected trees, grey intervals correspond
to the 95% prediction intervals at each site, i.e. taking into account the observation laws given the
proportion of infected trees. Red points correspond to the observed data. Only four observations
are available for sampling 7 because at this date (November 13) the leaves had already fallen from
the trees located upstream the valley. The total coverage rate over all sampling dates is 0.67.

S4.5 Sampling densification

As in Appendix S4.2, numerical simulations were run to disentangle the true dispersal process

from alternative dispersal processes, with densification of time and site for the raw and the refined

sampling. Simulations were run with 21 sampling dates instead of 6, which amounts to one sampling

every week. The number of sampling sites was set to 45 for all sampling dates. The steps described

in Appendix S4.1 and S4.2 were reiterated until the estimation of n = 50 realistic epidemics for

each dispersal model.
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Table S2: Efficiency of model selection for the densification of time samples (21 instead of 6) and
the site sampled (45 instead of 12). The four first columns indicate the proportion of cases, among
50 replicates, where each tested model was selected using AIC, given that data sets were generated
under a particular model (i.e. true model). Column dAICtrue (resp. dAICwrong) indicates the mean
difference between the AIC of the model selected when the model selected is the true one (resp.
when the model selected is not the true model) and the second best model (resp. being the true
model or not).

Selected Model
JExp JGauss JExpP R.D. dAICtrue dAICwrong

True Model
JExp 0.72 0.06 0.16 0.06 3.23 1.05

JGauss 0.22 0.60 0.04 0.14 7.33 1.67
JExpP 0.12 0.06 0.82 0 1788.56 2.72
R.D. 0.1 0.28 0.02 0.60 27.01 0.94

S5 Carrying capacity of poplar leaves

We measured the area of 10 wild poplar leaves (Populus nigra) and obtained a mean leaf area of

870 mm2. We consider that poplar rust can not infect the leaf veins and edges, which represent

approximately 15% of the leaf area. This leads to a net leaf area accessible to the pathogen of

740 mm2. The size of a poplar rust lesion ranges from 0.2 mm2 to 0.8 mm2 (Maupetit et al., 2018).

The lesions cannot fuse and are surrounded by living host tissue. We thus consider a lesion occupies

a total area of 1 mm2. This leads to a maximum of 740 lesions per leaf on average. To respect this

order of magnitude, we consider in this analysis that the carrying capacity of a poplar leaf is 750

poplar rust lesions.
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