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The existence of a variety of different phylogenetic inference methods,
leading to different, potentially inconsistent trees for the same dataset,
brings forward the need for appropriate tools for comparing them.
Although comparing labeled gene trees remains a largely unexplored field,
alarge variety of pairwise measures of similarity or dissimilarity have been
developed for comparing unlabeled evolutionary trees. Among them are
the methods based on counting the structural differences between the two
trees in terms of path length, bipartitions or quartets for unrooted trees,
clades or triplets for rooted trees (Cardona et al., 2010; Estabrook et al.,
1985; Critchlow er al., 1996), or those based on minimizing a number
of rearrangements that disconnect and reconnect subpieces of a tree, such
as nearest neighbour interchange (NNI), subtree-pruning-regrafting (SPR)
or Tree-Bisection-Reconnection (TBR) moves (Jiang er al., 2000; Hickey
et al., 2008; Allen and Steel, 2001). While the latter methods are NP-
hard (Lin et al., 2012), the former are typically computable in polynomial
time. In particular, the Robinson-Foulds (RF') distance, defined in terms
of bipartition dissimilarity for unrooted trees, and clade dissimilarity for
rooted trees (Mittal and Munjal, 2015), can be computed in linear (Day,
1985), and even sublinear time (Pattengale ef al., 2007).

On the other hand, metrics have also been developed for node labeled
trees (rooted, and sometimes with an order on nodes) arising from
many different applications in various fields (parsing, RNA structure
comparison, computer vision, genealogical studies, etc), where node labels
in a given tree are pairwisc different. For such trees, the stundard Tree
Edit Distance (TED) (Zhang and Shasha, 1989), defined in terms of a
minimum cost path of node deletion, node insertion and node change
(label substitution) transforming one tree to another, has been widely used.
While the less constrained version of the problem on unordered labeled
trees is NP-complete (Zhang ef al., 1992), most variants are solvable in
polynomial time (Zhang, 1993, 1996; Schwarz er al.. 2017).

The metric we developed in Briand er al. (2020), referred toas ELRF,
is the first effort towards comparing labeled gene trees, expressed in terms
of trees with a binary node labeling (typically speciation and duplication).
ELRF is an extension of the RF distance, one of the most widely used
tree distance, not only in phylogenetics, but also in other fields such as
in linguistics, for its computational efficiency, intuitive interpretation and
the fact that it is a true metric. Improved versions of the R distance
have also been developed (Lin et al., 2012; Moon and Eulenstein, 2018) to
address the distance drawbacks, which are lack of robustness (a small
change in a tree may cause a disproportional change in the distance)
and skewed distribution. Classically defined in terms of bipartition or
clade dissimilarity, the RF distance can similarly be defined in terms
of edit operations on tree edges: the minimum number of edge contraction
and extension needed to transform one tree into the other (Robinson and
Foulds, 1981). In Briand er al. (2020). this definition of the RF distance
was extended to node labeled trees by including a node flip operation,
alongside edge contractions and extensions. While remaining a metric,
ELRF turned out to be much more challenging to compute, even for
binary node labels. As a result, only a heuristic could be proposed to
compute it. _'—(Z:_{_)gq]“ . \

In this paper, we explore a different extension bf R F' to node labeled
trees, directly derived from TED (Zhang and Shasha, 1989), which is a
reformulation of the RF distance in terms of edit operations on tree nodes
rather than on tree edges. We show that this new distance is computable
in linear time for an arbitrary number of label types, thus making it useful
for applications involving not only speciations and duplications, but also
horizontal gene transfers and further events associated with the internal
nodes of the tree. We show that the new distance compares favourably to
RF and ELRF by performing simulations on labeled gene trees of 182
leaves. Finally, we use our new distance in the purpose of measuring the
impact of taxon sampling on labeled gene tree inference, and conclude
that denser taxon sampling yields better predictions.

2 Notation and Concepts & Yad
Let T be a tree with node set V/(T') and edge set E(T). Given a node S 4

\
of T, the degree of x is the number of edges incident to z. We denote by v "lg“ v ‘,,Q
L(T) C V(T) the set of leaves of T, 1.e. the set of nodes of T of degree ﬁ,my ',MW
one. In particular, given a set £ (let us say taxa or genetic elements), a tree no A'/J 0 M
T on L is a tree with leafset L(T) = L. w—,\"‘
Anode of V(T) \ L(T) is called an internal node. A tree with a single ~Oe 2/
intemnal node z is called a star tree, and z is called a star node. An edge J{Orw

connecting two internal nodes is called an internal edge; otherwise, it is a

rerminal edge.Moreover, a rooted tree admits a single internal node r(7T')

; ’\L/[‘D)’)/Z(/)—\ ”
~considered as the ;oiolj Now an internal node x is binary if @ is of dchee) I )
3and(T) Is binary if r(T) is of degree 2. A e 9 e
Let z and y be two nodes of a rooted tree T'; y is a ,dffﬁ"ﬂ‘{‘,’ﬂ_oi@ RS ) ((C A.\—\A‘v)
y is on the path from z to a leaf (possibly y itself) of T} If T is rooted, we

—

say that y is a child of z if e = {xz, y} is an pda ofE_(T) with y being cam
Y G

-l »
adescendant of z. If T is unrooted, we call the st {‘J‘ {z.y} € E(T)} L(/\hr }L’“‘v

the set of 4R f <. For a rooted or an unrooted tree T', we denote by | oo
Ch(z) tlmré of an internal node z of T \_‘,/‘n n"@z( g
A subtree S of T is a tree such that V' (S) C V(T), E(S) C E(T) ” (T“) . e
) ckaan-‘y edge of E£(S) connects two nodes of V/(.S). For a rooted tree T, s t(,, .
d [

we ote by T the subtreg of T rootedyat z, € V/(T'), i.e. the subtree of
T containing’@%&MMﬁL(TJ) the clade of z.

The bipartition of a tree T corresponding to an edge e = {z,y} is
the unordered pair of clades L(T%) and L(T,) where T and T, are the
two subtrees rooted respectively at & and y obtained by removing e from
T. We denote by B(T') the set of non-trivial bipartitions of T, i.e. those
corresponding to internal edges of T.

deiyee 3

2.1 The Robiison-Foulds distance

Given two unror ted trees 7' and T” on the leafset £, the Robinson-Foulds
(RF)distance t +iween T and T is the'symmetric difference between the
bipartitions of tl ¢ two trees. More precisely,

TSe o{%

CRF(D,T') = |B(T)\ B(T")| + |8(T") \ B(T)|

As recalled “:: Briand er al. (2020), the RF distance is equivalently
defined in terms of an edit distance on edges. However, as for labeled trees
an additional substitution operation on node labels will be required, for
the sake of standardization, we reformulate the edit operations to operate
on nodes rather ri:an on edges.

Definition 1 (r ade edit operations). Tiwo edit operations on the nodes
of atree T (root - or unrooted) are defined as follows:

o Node deletic :: Let x be an internal node of T which is neither the
root nor a ste-r node, and let y be the parent of x if T is rooted, or y be
a given chilc -+ x which is not a leaf if T is unrooted (such ak y exists
Sfrom the fac: :hat x is not a star node). Deleting T means making the
children of 3 ecome the children of y. More precisely, Del(T, z,y)
is an operati-n transforming the tree T into the tree T' obtained from
T by removing the edge {x, z} for each z € Ch(z), creating the edge
{y, z} for each z € Ch(z) \ {y}, and then removing node .

Node insertion: Let y be a non-binary internal node of V(T).

o wek

ol ol

Inserting x as a child of y entails making x the parent of a subset (:
Z C Ch(y" such that |Z| > 2. More precisely, Ins(T,z,y,Z) is ~—= ¢
an operatio transforming the tree T into the tree T’ obtained from 3
T by remov 1g the edges {y, z:}, for all z; € Z, creating a node ©

and a new « ige e = {x, y}, and creating new edges {z,zi}. for all

2, €EZ.

Notice the one-to-one correspondence between operations on nodes
and operations on edges. In fact, deleting a node z by an operation
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A Linear Time Labeled Robinson Foulds Distance

Del(T, x, y) results in deleting the edge {z, y}. while inserting a node
x by an operation Ins(T,x,y, Z) results in inserting the edge {x, y}.
Here, we define the R F" distance in terms of edit operations on nodes. This
definition is equivalent to the more classical formulation in terms of edit
operations on edges. Formally, let 7" and T’ be two trees on the same leafset
L. The Robinson-Foulds or Edit distance (Robinson and Foulds, 1981)
') between T and T is the length of a shortest path offnode edit

/ defined a5 theysymmetrical difference between the bipartitions of the two
W l"\' J'\ m?rrtéf;f unrooted trees, or the symmetrical difference between the
des of the two trees in case of rooted trees, has been shown to be a

ones ? s
metric. _’———‘ﬂq
“ ofrooted trees, the RF distance is defined as the symmetric

e
S eo é )L{ difference between the clades of the two trees.

Call a bad edge of T with respect to T” (or similarly of 77 with respect
to T'; if there is no ambiguity, we will omit the “with respect to” precision)
an edge representing bipartitions which are not shared by the two trees, i.e.
an edge of T (respec. T”) defining a bipartition of B(T) (respec. B(T"))
which is not in B(T") (respec. in B(T')). An edge which is not bad is said
to be good. Terminal edges are always good. The only thing that can make
bipartitions and clades differ in number is rooting into a bad edge. In that
case, the same bipartition, corresponding to the two edges adjacent to the
root, would be counted twice. Given two rooted trees, their RF' distance
can then be deduced from the RF distance of the “unrooted version™ of
the two trees by applying Lemma 1 in Briand er al. (2020).

- . ) ot b
operations{transforming 7" into 7". This distance measure, equivalently

3
A T c Sub A c
3 €
Del
A Ins A c

Fig. I: The transformation of a tree 7" into a tree 7" depicting the three edit
operations on nodes. From top to bottom: node label substitution (leading
to the red label), node deletion (the parent of D and E) and node insertion
(the parent of D and C).

In the following the unlabeled version of a tree T € T is simply T'
ignoring its node labels.

Lemma 1. The function LRF(T, T") assigning to each pair (T, T') e
TZ‘ the length of a shortest path of node edit operations transforming T

into T" defines a distance on T¢.

Proof. The non-negative and identity conditions are obvious. For the
symmetric condition, notice that we can reverse every edit operation in a
path from T to T” to obtain a path from 7" to T" with the same number of

. . . events, and vice versa (insertions and deletions are symmetrical operations, O‘r‘ a VI E 3

MO S‘]"‘ In this paper, we focus on unrooted trees, thus avoiding the special case and any substitution can be reversed by a substitution). We thus have ) \*.—
6\‘? 3 of the root. Therefore, from now on, all trees are considered unrooted. LRF(T',T) < LRF(T,T’) and LRF(T, T') < LRE(T’,T). and ‘e'“? d IS \‘&

M I w e + ) ( w“ﬁ} )b h} kC(i i e equality follows. G Wi
Finally, we prove t . triangular inequality condition: for three trees T "

Comaitlin o dts ' 172 : © ré-e —c
')\A\'S WO ‘{5 l ’ L‘ \Af" 2 “'CSOW T’ and T”, to transfon : T into T”, we may take any path of edit operation )-y{t <]
N ey l{w \Z 3 Generalizing the RObInSOﬂ FOUIdS distance to from T to T", followr i by any path of edit operations from T to T ¥t Lot~ sTunDy §

Labeled Trees
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A tree T is labeled if and only if each internal node x of T has a label
A(x) € A, A being a finite set of labels. For gene trees, labels usually
represent the type of event leading to the bifurcation, typically duplications
and speciations, although other events, such as horizontal gene transfers,
may be considered. The metric defined in this paper works for an arbitrary
' number of labels. We generalize the RF distance to labeled trees by
generalizing the edit operations defined above. This is simply done by
introducing a third operation for node labels editing.

e 2
w\fv'wﬁjf‘ s
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Definition 2 (Labeled node edit operations). Three edit operations on
internal nodes of a labeled tree T' are defined as follows:

o Nodedeletion: Del(T, x, y) is an operation deleting an internal node
z of T with respect to a child y of T which is not a leaf, defined as in
Definition 1.

Node insertion:

Ins(T,z,y,Z,)\) is an operation inserting an
internal node x as a new child of a non-binary node y, and moving
Z C Ch(y) such that |Z| > 2, to be the children of x, as defined in
Definition 1. In addition, the inserted node © receives a label \ € A.
Node label substitution: Sub(T, x, \) is an operagion substituting the
label of the internal node z of T with A € A. J‘. Lt‘tu-y

’tf-ﬁ;{h\:ﬂ e

These operations are illustrated in Figure 1.

Let T, be the set of unrooted and labeled trees on the leafset £. For
rwo trees T', T” of T, we call the Labeled Robinson Foulds distance
between T and T” and denote LRF (T, T”) the length of a shortest path
of labeled node edit operations transforming 7" into 7" (or vice versa). The
two following lemma state that, similarly to RF, LRF is a true metric.
Moreover, LRF is exactly RF for unlabeled trees (or similarly labeled
with a single label).
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follows that LRF(T, .”) < LRF(T,T”) + LRF(T",T"). O

Lemma 2. If A it restricted to a single label, then for each pair

(T,T') € T2 LRF(",T') = RF(T,T’).

Proof. Let/betheoniy label of A. Let P be a path of node edit operations
transforming the unlab “led version of T into the unlabeled version of T,
such that [P| = RF(T,T’)\Labeling by ! each inserted node leads to
a corresponding path of labeled node edit operations transforming 7" into

’,and thus LRF(T,T') < RE(T,T").

’T Conversely, Let P I'c a pallﬁa eled node ediy operations transforming
T into T’, such that [P| = LRF(T,T’)ifAs a single label exists,
node substitutions are not defincd, and thus P is restricted to a set of
node msertlonf\;md del ‘lonSmnsforming T into T”, and thus a fortiori
the unlabeléd version Thus
RF(T,T') < LRF(:

of T into the unlabeled version of T”.

,I"), which completes the proof. O

A previous extensi: :: of RF to labeled trees, based on edit operations
aodes, was introduced in Briand et al. (2020). This

distance, which we cal ELRF, was defined on three operations:

on edges rather than on

o Edge extension Ext(T, z, X) creating an edge {z, y} and defined as
a node insertion Ins(7T, y, z, X, A(z)) inserting a node y as a child
of z and assigning to y the label of z;

Edge contraction Cont(T, {z,y}) similar to a node deletion
Del(T, y, ) dele-ing y, but only defined if A\(z) = A(y):

Node flip Flip(x, ») assigning the label \ to z.

Given two labeled cees T and T7 ofTE ELRF(T,T’) is the length
of the shortest path cr edge e((enslonBed"e contracuorSand label ﬁlpS
required to transform 1" to T”.

The following lemma makes the link between LRF and ELRF.
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Briand et al.

Lemma 3. For any pair (T, T') € TE
LRF(T,T') < ELRF(T,T")

Proof. Let P be a path of edge edit operations and label flipyransforming
Tinto T’ suchthat [P| = ELRF (T, T’). Then the sequence P’ obtained
from P by replacing each edge extension by the cormresponding node
insertion, each edge contraction by the corresponding node deletion and
each node flip by the corresponding node substitution is clearly a path of
node editoperations of length |[P’'| = |P| = ELRF(T, T") transforming
Tinto T’. And thus LRF(T,T') < ELRF(T,T"). O

The rest of this paper is dedicated to computing the edit distance
LRF(T,T’) for any pair (T, T") of trees of T¢.

3.1 Reduction to Islands

In this section, we define a partition of the two trees into pairs of maximum
subtrees that can be treated separately.
While a good edge e of T has a corresponding good edge e’ in
T’ (the one defining the same bipartition), a bad edge in T has no
X corresponding edge in T”. However, these edges may be grouped into

§
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Wr words, dq island of T" iy a maximum subtree with all internal
< e gzs (it any) being bad €dges of 7', and all terminal edges being good

[)\f\»ec:\ wek

pairs of corresponding islands (called maximum bad subtrees in Briand
et al. (2020)), as defined bellow.

Definition 3 (Islands). An island of T is a maximum subtree (i.e. a
subtree with a maximum number of edges) I of T such that I contains no
internal edge which is a good edge of T, and all terminal edges of I are
goed edges of T. The size of I, denoted €(I), is its munber of intermal

ecges of T'. Notice that an island [ of T' may have no internal edge
7 ~

% X, \(6 at 2!, ie. it may be g’stat¥upe (if (1) = 0). A\/IO}IE)EI._LLM
M“{N is “partitioned” into_jts .- islgndsfin the sense thaty
p -~ ’.IU.V(I;:),---V(I,.)}isupurti!ionof\/'(T)‘. Notice also that eacl
/( ) "bededge of T belmll good edge belongs t
\(-(a-/ exactly two islands of T if it is an internal edge of T, or to a single islan
if it is a terminal edge of T'. 7

\

AR

T F G -5'?:

F.5. 2: Two trees T and T” on 7 for L = {A,B,C.D,E,F1,J},
w.h 2 binary labeling of internal nodes (squares and circles). Dotted
li es represent good internal edges, solid lines represent bad edges
a 4 thin lines represent terminal edges (which are good edges). This
representation highlights the partition of the two trees into the island
paits Loy 7y = {(I1, I{), ({2, I3), (I3, 14), (14, I})). Notice that each
dotted line belongs to its two adjacent islands

W T e
e

Finally, the following lemma from Briand er a/. (2020) shows that there
is a one-to-one correspondence between the islands of 7" and those of T”.

Lemma 4. Ler I be an island of T with the set {e;}1<i<r of terminal C Ov bl\
edges, and let {€’} <<y be the corresponding set of edges in T'. Then ,

o »
ST
the subtree I' of T', containing all €', edges as terminal edges, is unique. QD(? )\}
Moreover; it is an island of T'.

For any island I of T, let I’ be the corresponding island of 7. We call
(I,1') an island pair of (T, T'). See Figure 2 for an example.

_ Now.'lclI(T_T,)l = {(]1,1’1‘), (I2,15), -+, (In,I})} be tl?c set of ) X’i o€ I&A
island pairs of (T, T"). For 1 < i < nAet®; b;a/sh,mgmmauzbw B
node edit operations transforming I; into I’/ TRen the path P obtained )1’]6(/\-&, H"( Stie
by performing consecutively Py ,g%'g.\f,/}:’,. (that we represent later as

b ik OF%
P1.Pa. -

+.Pn) clearly transforms T into 7”. Therefore we have

LRF(T,T') < > LRF(I;,I])

/

As described in Briand er al. (2020), one major issue with ELRF is
that good edge contractions may not be avoided in a shortest path of edit
operations transforming 7" into 7", resulting in island merging. In other
words, treating island pairs separately may not resultin an optimal scenario
of edit operations under ELRF, preventing the above inequality from
being an equality. Interestingly, the equality holds for the L RF distance,
as we show in the next section.

All deletions

Allinsertions

Fig. 3: An optimal sequenc: of edit operations for the island pair (I, I”).

3.2 Computing the LR i distance on islands

We require an additional de inition. Two trees I and I” of an island pair
are said to share a commo: label I € A if there exist z € V(I) and
a’ € V(I') such that A(z) = Mz') = I. If I and I’ do not share
any common label, then (I, I) is called a labeldisjoint island pair, For )<
example, the pair (I3, I4) in Figure 2 or the pair (I, I’) in Figure 3 are
labebdisjoint. X
Now let (1, I’) be an isiand pair. Transforming I into I’ can be done
by reducing I into a star tr¢.: by performing a sequence of node deletions
(if any, i.e. if I is not alreac ; & star tree), and then raising the star tree by
inserting the required node: io reach I’. Only the unique node not deleted
during the first step might re. juire a label substitution; for all inserted nodes,
the label can be chosen to inatch that of I’. However, if I and I’ share a
common label | among their internal nodes, then the deletions can be done
in a W such that the surviving node  of I is one with label A(z) =, thus

%‘(J\M“‘w
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avoiding the need for any substitution. The number of required operations
is thus () deletions, followed by zero or one substitution, followed by
€(I’) insertions. Alternatively, the problem can be seen as one of reducing
the two trees into star trees by performing e(/) + ¢(I’) deletions, in a
way reducing the two islands into two star trees sharing the same label,
if possible. Figure 3 depicts an example of such tree editing for a label
disjoint island pair.

The following lemma shows that the sequential way of doing described
above is optimal.

Lemma 5. Ler (I,1") be an element of T, 11y. Then:

o IfI and I' share a common label, then LRF(I,I') = €(I) + ¢(I").
o Otherwise LRF(I,1') = e(J) +€e(I') + L.

Proof. The scenario depicted above for transforming [ into I’ clearly
requires (/) + €(I”) node insertions and deletions, and an additional

node label substitution in case I angl/” are label-disjoint. We can conclude

et’P = (01,02, - - 0p) beapath transforming T into T”. Let o;
be the leftrjost operation of the formo; = Del(T, z,y) weree = {z, y}
isagood edde of T. We denote by { By, By} with By = L(T)and By =
L(T,) the bipartition of £ correspohding/fo e. As {B1, Bo} is also a
bipartition in I, there should exista smallest j > i such that the operation
0; is a node inseytion operation recreating this bipartition. Let T; 1 be the A
tree obtained aftetperforming the sequence of operations (o1, -+ ,0i—1) Gaoer < ',}7/
onT, and T} be the Igee obtained from T’ _) after performing the sequence

of operations P[i, j] % (0i,0i4+1,++ ,0j-1,0;). Now let P’[i,j] = - : w[h'/" gy
(0% 417+ 105 _y) be the sequence of operations obtained from Pz, ;| \] M%V ovd-¢d
as follows: (1) Remove the, two operations o; and o;; (2) For each k, b)

i+ 1 <k < j—1, if orN\does not affect node y or if it is 4 Yy g
LS k<=1, ifouoes o 3T Lo mald
substitution, of, is simply oy; if o, = z.y), then replace A-4

oo oot

<
'E_| ;&,‘:goﬂf "l((ch

) i oo\ o ; ] A il.by-lhe-opg{aﬁgg o) = Del@ﬁz) if{: € Bi\ or by the operation ]
that LRF(I,1") < e(I) + €(I") it I and I" share a common label an 14 ! = Del(,z,p0if = € Ba; @ o, =Del(0) v, <), then replaee M.j)

LRF(I,I’) < e(I) + €(I’) + L,if I and I’ are label-disjoint.

s
one edge, and the only operution@%moving'un edge are node removal or
node insertion, we clearlx require at least €(I) + e(I’) node removals and
. . ] .

insertions to transtorm the ullabeled form of the tree 7 into the unlabeled

form of I’. Furthermore, as de{e&ene-de-aom t least one
node in I should survive (i.e?-gc)ﬁ’ge m%cle%’bﬁiﬁc;(‘i‘e 3’:’13«’5&5%5 if
the two trees are label-disjoint, then at least one node label substitution is
required. We can then conclude that LRF'(I,I') > e(I) +€(I") if I and
I’ share a common label and LRF(I,I’) > e(I) + e(I') + 1, if I and
I’ are lael-disjoint, which concludes the proof. O

(AN
N U boj\ The ‘vilowing lemma shows that good edge deletions can be avoided
(N in a min :nal edit path. Consequently jsland merging can also be avoided, .
\. which will then allow us eensidesiag!each pair of islands separately.
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Fig. 4. . path P transforming T into 77 of the form P;.P2.P3. P4,
each P; seing a shortest path for the island pair (I;, I.f). Here |P1| = 6,
[Pa| = ) |P3| = 1,and |Py]| = 0.

o2\ 0 1L by the operation 0}, = Del(J, z, z) if z € By and rename z as z, or =3 %
On the other hand, since an edit operation can remove or insert at mostg‘v:' ¢ P k = @ gy a

75 an afphak

Sabse of vt,
U wol- 0;{4’

St/j" of vc«‘nlif

. \. = Del(@)y, 2}
y. This sequence of operations then leads to the

replace it by the operation if.z € B> and rename z as

'& i whikh is the same

as T); except possibly the two labels of z and y. which can be corrected

by at most two additional substitutions. Therefore, we can substitute the

subpath P[4, j] by a subpath of at most the same number of operations that

do not involve deleting the good erge e. \/
It suffices then to proceed in the same way with the next leftmost good

a Yr
edge deletion of P, and so on, until no good edge deletion remains. O
We are now ready to prove the equality leading to the efficient

computation of the LRF distar-:¢ of two trees (see Figure 4 for an
example).

Theorem 1. Let T ooy = {( 1, I]), (I2, 13), -
island pairs of T and T'. Then

co (I, 1))} be the

LRF(T,T'):= Y  LRF(I,,I})
=1

Proof. Let %honcst path transforming T into T’ verifying the
condition of Lemma 6, i.e. not involving any deletion of good edges.
As islands can only share good edges, and good edges are never deleted
by any operation of P, islands ire never merged during the process
of transforming T into T”, and %us P can be reordered in the form
P1.Pa.-- Pn where each P;, 1 < i < #, is a path of edit operations
transforming ; into /7. Each P; SITIIHE a shortest path from I; to I/ as
otherwise il,&!\q’hc replaced by a s '.A:-nes‘t%uth, contradicting the fact that
Pisa shorté‘qfﬁﬁ ﬂ m]

The next result directly follow: from Lemma 5 and Theorem 1.

Corollary 1. Let Zip vy = {(:4,I]), (I2, I3), - -+ , (In, I},) } be the
island pairs of T and T’ and § be iire number aflabel-di:jailwirs. Then
n sl A
LRE(T,T') =Y (e(I) + e(I})) + 6
=1

4 Algorithm

We present our algorithm for cor puting the LRF' distance at a logical
level (Algorithm 1). The input is : pair of trees 77, T> of 7. We show
that LRF'(Ty, T=) can be compu:ed in time O(n), where n = |£].

We start with the identification of good edges. Lines | and 2 of
Algorithm 1 retrieve the non-trivial bipartitions for each input tree and
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Line 3 intersects the obtained bipartitions of 71 and T5 to generate the 20 ——— - Rutfins'nnl FQ.UI?S (.RE) ; —

set of good edges shared by the two input trees. This can be done in time P

O(n) (Day, 1985). . -
15 i

Next the algorithm identifies and characterises the islands of T, and
T (linqlal and 5). This is performed by a traversal of each tree in pre-order
and in doing so identifiing the islands, which are separated by good edges,
keeping track of the number of internal nodes, the labels of the internal
nodes of the islands, and the nodes associated with each island. Each tree
traversal is done il)\lime O(n).
equir&)uiring islands of T1 and 7% by iterating over

islandsdeJimited by the current good edge. then it proceeds by pairing on

remaining islands from each tree. Using the node-to-island map compute
earlier, the retrieval of the two island pairs associated with a good edge
can be done in constant time.

For each of the matching island pairs, at lines 9 and 14, the algorithm
checks whether each island pair has already been visited in a previous
iteration of the loop (the same island can be visited from multiple good
edges). Ifnot, the current distance is implemented by adding (1) +€(12).

Algorithm 1 LRF(T1, T2)

: bipartitions, = getBiparitions(Ty);
: bipartitionss = getBiparitions(Tz);

1

2

3: goodEdges = bipartitions; N bipartitionsg\:{\—(w, A h;pw\l\\’\”w}zo —
1 4

: islandsy = getIslands(T1, goodEdges);
5: islandsa -~ getlslands(Tz, goodEdges):
6: distance = 0;
7:fori € g 2dEd
8:

9

(z1, u1), (z2,y2)] = islandPair(i, islandsy, islandss);
; if 1. isited == False:
10: a’‘stance += r1.€ + Y1.6
11: it z1.labels Ny;.labels == 0:
12; distance +=1;
13 zi.visited = True
14: if zo.visited == False:
15: distance += Tg.€ + ya.€;
16: if zo.labels M yo.labels == O:
17 distance +=1;
18: x ..visited = True

19: if goodE iges ==

20: distc wce += islands) [0].¢ + islands2[0].€

213 if isl nds1[0].labels N islands2[0].labels == O:
22: d *tance +=1;

23: return d- -tance;

The for-loop ends with lines 11-12 and 16-17 account for a potentially
required single substitution between corresponding islands, in case they
have no label in common (i.¢. they form a label-disjoint island pair). These
operations ca-: also be performed in constant time, giving an overall O(n)
-loop.

Finally, 1."ies 19-22 are needed to handle the special case where there
is no good e« ge between T and T», for instance if T7 or Th is a star. In
such a case, there is only one island per tree, which is matching.

runtime for !

We provide an open source implementation of L RF' in Python as part

of the pyLabeledRF package (https://github.com/DessimozLab/pylabeledrf).
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Fig. 5: Empirical comparisons of the distance inferred for an increasing

number of random edit operations (nodz insertion, deletion, substitution)

on the NOX4 gene tree (182 leaves), us-ng the classical RF distance (top),

the ELRF approximation (Briand er al. ( 2020); middle), and the LRF exact

distance (bottom).

5 Experimental results

To illustrate the usefulness of LRF, we performed two experiments.
First, we compared LRF with RF ai.d ELRF on a labeled gene tree
with random edits. Second, we used LRF to tackle an open question in
orthology inference: does labeled gene tree inference benefits from denser
taxon sampling?

5.1 Empirical comparison of LI’F with RF and ELRF

We retrieved the labeled tree associat ¢ with human gene NOX4 from
Ensembl release 99 (Yates er al., 202C, containing 182 genes, including
speciation and duplication nodes. Next. we introduced a varying number of
random edits, with 10 replicates, as follows: with probability 0.3, the label
of one random internal node was subs:ituted (from a speciation label into
a duplication one or vice versa); the rest of the probability mass function
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A Linear Time Labeled Robinson Foulds Distance 7

= - - - two genes (due to losses on early branches) and was thus excluded from
With auxiliary genomes (increasing taxon density) . <
the rest of the analysis.

44 l [ E I |— To evaluate the inference process, among the 100 species, we randomly
l l l l I T £ I 3 selected nested groups of 10, 20, 30, 40, 50, 60, 70, 80 and 90 species.
3] | ! | - 1 | ) 3 | We considered the 10 species in the first group as the species of interest.
1 L 1 l { E | % All other species were used to potentially improve the reconstruction of

: I i

the gene trees for the first 10 genomes. Then, for each group, we aligned

At

protein sequences translated from homologous genes using MAFFT L-
INS-i (Katoh and Standley, 2013), inferred phylogenetic trees from the
alignments using FastTree (Price er al., 2010), and annotated their nodes

LRF(estimated tree, true tree)
- N

using the species overlap algorithm (van der Heijden er al., 2007) as
implemented in the ETE3 python library (Huerta-Cepas er al., 2016).

0 g T T T T
0 20 40 60 8 100 Finally, we pruned both the inferred gene trees and the true trees to include
Total number of genomes used for labeled gene tree inference R : . z
only proteins corresponding to the 10 species of interest.

Fig. 6: Denser taxon sampling decreases labeled tree estimation error: We used LRF to assess the distance between the estimated and true
labeled gene trees reconstructed with an increasing number of auxiliary labeled trees, for the various number of auxiliary genomes considered.
genomes (i.e. obtained by including the additional genomes during tree For each scenario, we computed the mean LRF distance over all gene
inference and labeling, followed by pruning) have a smaller LR F' distance trees (Fig. 6). The mean error (expressed in LRF' distance) decreases
to the true trees. Error bars depict 95% confidence intervals around the as the number of auxiliary species increases. This simple simulation
mean. study suggests that denser species sampling improves labeled gene tree

inference.

was evenly distributed among all internal edges (each implying a potential
node deletion) and all nodes of degree > 3 (each providing the opportunity 6 Discussion and Conclusion

of a potential node insertion). For ELRF, consistent with its underlying The LRF distance introduced here overcomes the major drawback of

ELRF, namely the lack of an exact polynomial algorithm for the latter.
Indeed, with ELRF, minimal edit paths can require contracting “good™
edges, i.e., edges present in the two trees (Briaad er al., 2020). By contrast,

model, we added the requirement that edge deletion only affect edges with
adjacent nodes with the same label.

For each of R~, LRF and ELRF, we provide the distance as
a function of the 1 =mber of random edits (Fig. 5). As expected, the

with LRF, we demonstrated that there is al .vays a minimal path which
conventional RF' ¢ stance returns the smallest values because it ignores

does not contract good edges. Better yet, w- proved that LRF can be
labels. The two la-

led RF' altematives performed similarly, but the computed exactly in linear time. The new “ormulation also maintains

other desirable properties: being a metric and -educing to the conventional
Robinson Foulds distance in the presence ¢ wees with only one type

heuristic for ELF & occasionally exceeded the true number of edit
operations — a shoi ‘zoming that we do not have with LRF', as we have an
exact algorithm for #is distance. Both labeled RF variants tracked better
the actual number ¢ changes, until around 13 edits for LRF or ELRF',
after which the mini:um edit path starts to be often shorter than the actual

of label. Finally, we showed that the new di .zance is computable for an
arbitrary number of label types associated wirh internal nodes of the tree.

Our experimental results illustrate the utility of computing tree
sequence of randon =dits. distances taking labels into account, as the conventional RF distance is
blind to label changes. At first sight, it may seem surprising thatin a tree of
182 leaves, the minimum edit path under LRF or ELRF already starts

27T f mpling on | L ; ;
5 he effect of danser taxon sampling on labeled gene underestimating the actual number of random .dit operations after around

tree inferencz 13 operations. However, this can be explainec. by the “birthday paradox™

We used LRF to asess the effect of species sampling for the purpose of (Abramson and Moser, 1970): to be able to rec.:nstruct the actual edit path,
labeled gene tree re ~mstruction. Consider the problem of reconstructing no two random edits should affect the same n7e. Yet the odds of having,
a labeled tree corre: vunding to homologous genes from 10 species. Our among 13 random edits, at least two edits affe {ing the same internal node
question is: is it bet er to infer and label the tree using these 10 species (among 179) is in fact substantial — approxi mately 36% in our case —
alone, or is it better i use more species to infer and label the tree, and just like the odds of having two people with t' ¢ same birthday in a given
then prune the resu: ing tree to only contain the leaves corresponding to group is higher than what most people intuit.
the original 10 speci-s? While denser taxon sampling is known to improve It has to be noted that LRF has the same ~ mitations as RF regarding
unlabeled phylogen :tic inference (Nabhan and Sarkar, 2011), we are not lack of robustness and skewed distribution Moreover, like RF and
aware of any previous study on labeled gene tree inference. ELRF, the main limitation of LRF is the lack of biological realism. For
First, using ALF (Dalquen er al., 2012), we simulated the evolution one thing, there is no justification to assign equal weight to the three kinds
of the genomes of 100 extant species from a common ancestor genome of edits in all circumstances. For instance, it is typically highly implausible
containing 100 genes (Parameters: root genome with 100 genes of 432 to introduce a speciation node at the root of a subtree containing multiple
nucleic acids each; species tree sampled from a birth-death model with copies of a gene in the same species. However, L R F complement analyses
default parameters sequences evolved using the WAG model, with performed using more realistic models are et r2navailable or too onerous
Zipfian gap distrib-zien; duplication and loss events rate of 0.001). In to compute. In particular, the ability of L. ¥ to support an arbitrary
the simulation, ger s can mutate, be duplicated or lost. All the genes in number of labels makes it applicable to genc irees containing more than
the extant species « 2n thus be traced back to one of these 100 ancestral just speciations and duplications, such as hori :ontal gene transfers or gene
genes and be assigned to the corresponding gene family. The 100 true conversion events.
gene trees, includiag speciation and duplication labels, are known from Finally, LRF constitutes a clear improvement over RF' in the context

the simulation. However, in our run, one tree ended up containing only of gene tree benchmarking, where trees inferred by various reconciliation



