
Response to Reviewers

November 11, 2022

Thank you for your comments and for securing reviewers who provided valu-
able constructive criticisms. Below are our point-by-point responses to your
comments as well as a summary of our responses to the referees’ key points.
The comments prompted us to make numerous improvements to the writing,
perform new comparisons with additional recently developed methods, new ex-
periments comparing MLE and Bayesian methods, as well as new experiments
investigating the effect of ignoring independence across sites. All received com-
ments are copied in this letter for convenience.

1 Recommender’s comments

Comment: Recommender’s summary.
Let me first give my own, self-contained summary of the manuscript. This

paper presents and applies a new Bayesian inference method of phylogenetic
reconstruction for multiple sequence alignments in the case of low sequencing
coverage but diverse copy number aberrations (CNA), with applications to single
cell sequencing of tumors. The idea is to take advantage of CNA to reconstruct
the topology of the phylogenetic tree of sequenced cells in a first step (the ‘sitka’
method), and in a second step to assign single nucleotide variants (SNV) to
tree edges (and then calibrate their lengths) (the ‘sitka-snv’ method). The data
are assumed to be in the form of an integer-valued C × L matrix A, where
C is the number of cells, L is the number of loci (here, loci are segments of
prescribed length called ‘bins’), whose entry aij at row i and column j is the
(preprocessed) number of copies, called ‘copy number state’ (CNS), of locus j in
cell i. These data are then summarized/simplified into a binary-valued C × L
matrix Y , whose entry at row i and column j is yij = 0 if in cell i, the CN
S at locus j and at locus j + 1 are equal (i.e., aij = ai,j+1), and yij = 1
otherwise. Biologically speaking, when yij = 1, in the ancestral lineage of cell
i, at least one genomic rearrangement has occurred, and more specifically the
gain or loss of a segment with at least one endpoint in locus j or in locus
j + 1; this event is viewed as a ‘mutation at marker j’, where marker j is
the point where loci j and j + 1 touch. The authors expect the infinite-allele
assumption to approximately hold (i.e., that at most one mutation occurs at any
given marker 1 and that 0 is the ancestral state). They refer to this assumption
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as the ‘perfect phylogeny assumption’. By only recording from CNA events the
endpoints at which they occur, the authors lose the information on copy number
state (and also forget the dependencies between these endpoints), but they gain
the assumption of independence of the mutational processes occurring at different
sites, which approximately holds for CNA endpoints but certainly not for CNS.
The goal of sitka is to produce a posterior distribution on phylogenetic trees
conditional on the matrix Y , where here a phylogenetic tree is understood as
containing the information on 1) the topology of the tree but not its edge lengths,
and 2) for each edge, the identity of markers having undergone a mutation, in
the sense of the previous paragraph. For any given phylogenetic tree t (in the
previous sense), we can define xij(t) = 0 or 1 according to whether cell i carries
a mutation at marker j (i.e., descends from an edge carrying a mutation at j)
or not, based on tree t. The posterior of a tree t is a measure of agreement of
the matrices Y and X(t). More specifically, it is the probability of Y under the
assumption that conditional on t, the variables yij(t) are independent and the
law of yij(t) conditional on xij(t) = ε is Bernoulli with parameter pε, where
p0 = rFP is called a ‘rate of false positive’ and 1− p1 = rFN is called a ‘rate of
false negative’. The results of the method are tested against synthetic datasets
simulated under various assumptions, including conditions violating the perfect
phylogeny assumption and compared to results obtained under other baseline
methods. The method is extended to assign SNV to edges of the tree inferred by
sitka. It is also applied to real datasets of single cell genomes of tumors.

Main comments. I concur with the comments of Reviewers 1 and 3, in
particular:

It would be good to improve the structure of the paper and expand some bits
in order to make it readable by a wider audience (cf. comment of Reviewer
3). For example, the authors might like to expand the Introduction in order to
have the reader better understand the context (low sequencing coverage but addi-
tional information coming from CNA), the specificities of the method, its main
aspects and its applications (subclonal structure?), similarly as in my personal
summary.
Response: Thank you for the suggestion. We have amended the introduction
with three paragraphs, one providing background on the type of sequencing
platforms motivating this work, one providing additional information on CNA,
and one on applications.

Comment: There are also several concepts and tools that should be defined
more accurately (perfect phylogeny, overlapping/non-overlapping CNA, main
principles of methods like UPGMA and the like, doublet/mouse cell/cycling cell,
delta method, Sackin/Colless/Yule...).
Response: We have improved the description of several concepts, includ-
ing perfect phylogeny, overlapping/non-overlapping CNA, UPGMA, WPGMA,
Neighbour Joining, HDBSCAN, MEDALT, MrBayes, medicc2, doublet cell, cy-
cling cell, delta method, Sackin, Colless, Yule.

Comment: There are also Supplemental figures that could be included in the
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main text (e.g., Supplemental Figures 1 to 4).
Response: We have moved the following supplementary figures to the main
text: Supplementary Figure 1: moved to Main Figure 1; Supplementary Figure
2: moved to Main Figure 5; Supplementary Figure 3: moved to Main Figure 6;
Supplementary Figure 4: moved to Main Figure 2.

Comment: Following up on the previous point, a wealth of existing methods are
cited in Introduction but their relation to sitka, as well as the difference/similar-
ity with the benchmarked methods, should be better explained (maybe proposing
a rough classification).
Response: We have expanded the introduction section to better explain exist-
ing methods.

Comment: Some other methods should be benchmarked, as mentioned by Re-
viewer 1.
Response: We have added comparisons to two recently developed methods,
benchmarking them against sitka on three real datasets. We have updated Fig-
ure 2d and section 2.2 to incorporate the new results.

Comment: The claim that sitka relaxes “the independence assumptions re-
quired by existing phylogenetic methods” is not sufficiently well explained. In-
deed, the method does not assume that copy number states evolve independently
at different sites, but it assumes that the endpoints of CNA events occur in-
dependently, which may approximately hold for say the left endpoint, but not
when combining both endpoints (see comment of Reviewer 3). Worse than that,
it assumes independence of false positive/negative processes between lineages of
different cells. It would be good to emphasize these aspects, to discuss the advan-
tages and shortcomings of these assumptions (in Discussion) and also, as asked
by Reviewer 3, to test violation of within-site independence, for example by as-
suming in synthetic experiments that sizes of CNA events are not exponentially
distributed but e.g., always have the same fixed value or follow a heavy-tailed
distribution.
Response: Reviewer 3 and yourself are correct that our method ignores certain
pairwise dependencies, and we agree this is a critical point to discuss. To address
this point we have performed an additional set of experiments and highlighted
this point in the discussion section. Please refer to our response to Reviewer 3
for a detailed account of the additional experiment.

Comment: Could you maybe quantify the trade-off (mentioned line 58) between
scalability/computational time and estimation accuracy ?
Response: Exact quantification of the trade-off between computation time
and estimation accuracy is difficult, for two reasons. First, ground-truth data
in phylogenetic inference is scarce. Second, the models at the realistic end
of this “scalability vs. accuracy continuum” are currently too costly to infer
within a Bayesian framework, at least based on our parallel computing-based
probabilistic programming tools. Perhaps in the future, distributed/MPI-based
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Bayesian inference would allow us to investigate this, but we are not aware of
user-friendly distributed computing probabilistic programming languages that
would allow that at the moment. See also the related discussion later in this
letter, under reviewer 1, point 5, second paragraph, where a similar trade-off is
observed between MrBayes and the UPGMA method.

Comment: Following up on the previous point (again), don’t you think it would
be more natural to model violation of ‘perfect phylogeny assumption’ by modeling
directly the biological CNA process (gains and losses) as you do it verbally at
the bottom of page 3 and in Supp Fig 3? In particular, I don’t understand the
IS violation procedure applied to the processed data (merging two columns): how
do you do the merging and why does it mimic homoplasy? More generally, can
you argue why you apply a lossy transformation to the data before analyzing it?
At first sight, it looks like you lose a lot of information by replacing CNS by a
binary variable telling whether contiguous bins have different CNS or not. In
addition, the method assumes that the ancestral state of this binary variable is
0, which of course does not always hold in reality. Why can’t you encode the
data by the difference between CNS at two contiguous bins, so you don’t lose the
pseudo-independence of marker evolution at different marker sites but can keep
the information on CNS and compute tree likelihood under the model of CNA
evolution used in the simulations? Please discuss this.
Response: We acknowledge that we lose information with application of the
sitka transformation. This transformation is necessary for the computational
feasibility of the likelihood, especially as required in Equations (3) and (4). In
absence of this relaxation, the computational complexity of each iteration of the
MCMC algorithm may no longer be bounded by O(|C|+ |L|). Indeed, the ap-
proach to efficiently compute the likelihood depends on binary latent variables
with specific perfect phylogeny assumptions, and it is not clear how to generalize
this calculation to models that keep track of the evolution of difference between
CNS at two contiguous bins.

Comment: Minor comments.
General comment – isn’t there sometimes a double meaning of the word ‘lo-

cus’? (used both to denote a bin and a marker)
Response: We have updated the manuscript and changed the use of locus to
marker or bin whenever the context is ambiguous.

Comment: line 49 – The fact that likelihood-based methods perform statisti-
cally better than e.g., distance-based ones, should be supported by examples or
references.
Response: We have added three more references in our discussion of distance-
based methods.

Comment: line 104 – Please add that this procedure consists in passing from
a type I to a type II tree. Anyway, I’m not sure you really need to explain the
reader the difference between type I and type II trees.
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Response: We have updated the text to clarify this.

Comment: line 130 – What do you mean by “sitka’s performance degrades
gracefully in the face of some of the key types of expected violation of the perfect
phylogeny assumption”?
Response: We agree that ‘gracefully’ was vague. We have changed this sen-
tence to “Synthetic experiments show that sitka’s performance decreases roughly
linearly as a function of the rate of the key types of expected violation of the
perfect phylogeny assumption (Fig 7-a,b).”

Comment: line 222 – The Discussion section seriously needs to be fleshed out.
Response: We have expanded the discussion section. Key additions include:
the trade-offs of ignoring the pairwise dependencies between CNA end-points,
performance of global vs the local noise models, trade-offs of the sitka-transformation.

Comment: line 322 – Remove “disjoint”
Response: Fixed.

Comment: line 339 – Did you test the robustness of the method related to the
upper bound of the support of the prior of false positive/negative rates?
Response: We checked that the posterior of the FPR and FNR random vari-
ables were substantially away from the specified bounds for all real datasets
in our study, namely OVA, SA501, and SA535. For example, below we show
boxplots to summarize the posterior distribution for these quantities for the
OVA dataset. Note that the FPR parameter posterior distribution concentrates
tightly around 0.021, well away from the specified bounds 0.1. Similarly, the
FNR parameter posterior distribution concentrates tightly around 0.098, well
away from the bound of 0.5).
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Figure 1

Comment: line 359 – Please give a reference for the “ ’rich gets richer’ be-
haviour built-in into the prior, which is viewed as useful in many Bayesian
non-parametric models” (see also comment by Reviewer 1)?
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Response: We added a relevant citation [1].

Comment: line 391 – I like your definition of a Gibbs sampling algorithm (“an
MCMC move with no rejection step”), but I am not sure it is very academic.
Response: We removed that comment and added a reference to the follow-
ing paper: Geman, Stuart, and Donald Geman. ”Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images.” IEEE Transactions on
pattern analysis and machine intelligence 6 (1984): 721-741.

Comment: line 429, eq (6) – Shouldn’t you have π(t0, dθ) rather than π(t, dθ)?
Maybe give a name to this argmin for future reference (see comment about lines
472–474).
Response: Good catch, we have fixed this typo. We also updated the Eq (6)
to denote the argmin with the notation τConsensus.

Comment: line 452 – Here and at some other places, you normalize scores by
the score of the worst performing method. It seems weird because in the presence
of a very poor-performing method for a given dataset, this will tend to overrate
all alternative methods.
Response: Our goal here is simply to make the results more comparable across
the replication over synthetic datasets. We forgot to highlight the fact that we
had included “Random” as one of the baselines, i.e., sampling a tree uniformly
at random. Naturally, this is the worst performing method. We hope that this
perspective of normalizing by a random reconstruction feels more intuitive. We
have clarified this in the text.

Comment: line 470 – Isn’t the “best possible tree” just the true tree?
Response: The best possible tree is derived from the true tree, but in general
can be different. To understand why, recall that the tree generation process
will simulate on each edge of the true tree a Poisson-distributed number of
evolutionary events (Section 9.5.3). As a result, some edges can have zero asso-
ciated evolutionary events. This means that even if we turned off all observation
noise it would not be possible to recover some of these zero-event edges, i.e.,
they are in a sense unidentifiable. The process of producing the “best possible
tree” essentially consists in collapsing these zero-event edges, hence forming a
multifurcating reference tree. We have updated the text to provide additional
explanations on the difference between the best possible and true tree.

Comment: lines 472–74 – What is the difference between the “greedy estimator
(GE) of Section 9.4.5” and the “trace search estimator (TSE) defined as a tree
in the sampler trace that minimizes the sample L1 distance (Section 9.4.5)”
? After the latter definition, it seems to me that the TSE is given by Eq (6).
Please give a mathematical formula for the estimator which is not defined by Eq
(6) and specify which is which.
Response: To see why TSE and GE are different, note that the former will
always output one of the trees visited by MCMC while the latter can produce
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a tree that has not been visited. Formally,

τTSE = arg min
t∈{ti}

∑
t′∈{ti}

L(t, t′)

where {ti} denotes the set of trees that were sampled during the MCMC pro-
cedure. We have updated the text in Section 9.5.2 to clarify this.

Comment: lines 478–484 and lines 496–498 – Please specify what is measured
(RF distances? Normalized? Confidence intervals?).
Response: The reported quantities are normalized RF distances along with
standard errors. We have added a description in the manuscript.

Comment: line 478 – Can you explain in Discussion why the global model can
outperform the local model?
Response: We made the observation of the global model performing better
only in the context of TSE. In the context of GE, the global and local pa-
rameterizations performed similarly. Our recommendation to use the global
parameterization stems from the facts that (1) both GE variants outperformed
both TSE variants, and (2) that the global parameterization is computationally
cheaper. We have updated the discussion to make this point.

Comment: lines 509 – Add “of size s” (to “An island...”)
Response: Fixed.

Comment: line 512 – Is there a reason why the violation rate thus estimated has
anything in common with the violation rate defined in the synthetic experiments?
Response: We acknowledge that the method used in that paragraph is heuris-
tic and we have modified the text to emphasize this.

The intuition behind this heuristic is that a loss leaves a distinctive signature
in the matrix z = x − y, where y is the data matrix, x = x(t), and t is the
consensus reconstruction. Consider for example the following figure:
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The bottom left shows an inset from the matrix in the top. Here, orange
indicates whether the marker was observed in the input data, while black indi-
cates whether the marker is present in the tree. The bottom right panel is a
schematic of the tree topology for this part of the tree where the clade on the left
is supported by markers a, b, and c, while the clade on the right is supported by
marker d. However, in a violation of the perfect phylogeny assumption, marker
c is also present in the clade supported by marker d. This signature manifests
itself (in the bottom left panel, indicated by the black arrow) as a column of
orange, unaccompanied by a black column. Our heuristics attempt to identify
this signature automatically.

Comment: line 552 - From my personal experience, the range of β for which
Beta-splitting trees are interesting and realistic is (-2, 0) rather than (-1, 10).
Response: The simulator [2] used in our experiments uses the generalized [3]
Beta-Splitting model [4], which itself is different from the Beta-Splitting model
of Aldous [5]. This distinction between models is mentioned in lines starting at
518 and 522.
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The generalized Beta-Splitting model with beta range (-1, 0) is comparable
to Aldous’ Beta-Splitting model with beta range (-2, 0). Briefly, the generalized
Beta-Splitting model is parameterized by two parameters α and β. In the case
α = β, we recover Blum-Francois’s (BF) Beta Splitting-model. As such, the BF
model itself is parameterized by a single beta parameter. The beta parameter
in the BF model can take values > −1, whereas Aldous’ Beta-Splitting model’s
β parameter can take values > −2. The authors [3] argue the expressivity of the
BF model is quite general; the BF model covers a wide range of tree topologies.
As β approaches −1, in the BF model, the realized trees become totally unbal-
anced; as β approaches infinity, realized trees become very balanced trees. In
our experiments, simulated trees include balanced and imbalanced trees. Please
see the Supplementary Fig. 7 for examples of generated trees.

Comment: line 566 - Why not follow the same procedure as previously? (Beta-
splitting trees and, as in my last main comment, simulation of the biological
CNA process)
Response: That experiment is concerned with parameterizations of sitka and
robustness to violations of assumptions. Thus we chose a simpler model to re-
duce the variability of results coming from other confounding factors that would
arise from more complicated models.

Comment: line 611–613 – Please give the mathematical formula defining g.,j.
Response: Updated in the text as follows. Let τ denote a rooted tree, u, one
of its unlabelled internal nodes, and c one of its leaves. Let clade(u) denote the
clade corresponding to u, i.e., the set of leaves descendent from u. We define
gc,u(τ) = 1[c ∈ clade(τ)].

Comment: lines 622–624 – Please be more precise and elaborate notation to
let the matrix o explicitly depend on its arguments (h, w, z?).
Response: We have updated the text to make the definition of the matrix o
more precise. In the process of doing that, we found that o(..) is a redundant
notation and replaced it by the essentially equivalent h(..).

Comment: line 669- – ‘loci’ should be ‘locus’ (twice).
Response: Fixed.

Comment: Supp Fig 2 – Please specify that the red nodes in (a) correspond
from top to bottom to markers 2, 3, 1 in this order. Also if you feel it is
important for the reader to understand the difference between type I and type II
trees, it might be good to display a type I tree with more interior marker nodes
on the same edge.
Response: We have amended the caption to Supplementary Fig. 2 and
added this clarification.

Comment: Supp Fig 3 – “By the infinite site argument” is confusing (assump-
tion vs approximation?)
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Response: We have updated the text to clarify this point as follows:
“If the infinite sites assumption holds, it is unlikely for the end-points of the

two gain events to exactly match.”

Comment: Supp Fig 10 - Please specify that only Sackin and Colless indices
are normalized and have positive values indicating more imbalance (it is the
contrary for β). Do you have a sense why Sackin and Colless indices always
give very similar values and why β is consistently estimated by ≈ -1?
Response: Sackin and colless are similar metrics. The former is the sum of
the depth of the leaves, while the latter is the sum of the absolute value of
the difference between the number of leaves of the left and the right child of
each internal node. We note that the normalized values of the two metrics are
similar, but not identical.

We follow the implementation in [4] to examine the normalisation procedure:

Sackin := INS/leafnb − 2

leafnb∑
j=2

1/j

Colless := ICN/leafnb − ((

leafnb∑
j=2

1/j)− ln(2))

where leafnb is the number of leaves in the tree and INS and ICN denote the
unnormalised Sackin and Colless metrics respectively.

For the beta statistic β [5], the maximum likelihood estimates for SA501,
OVA, and SA535 are −1.18, −1.31, and −1.33 respectively. We have normalized
these values by dividing by the absolute value of their maximum (1.18) for ease
of plotting. That is why the plotted numbers appear very close to −1.

2 Reviewer 1

We very much appreciate your helpful suggestions and comments regarding our
paper. Below are our point-by-point responses to your suggestions and com-
ments. The comments and questions are all included for convenience.

Comment: In this manuscript, the authors introduce a novel, scalable method
to infer phylogenies from single-cell whole-genome sequencing data based on copy
number information. The algorithm is applied to three independent datasets and
the goodness-of-fit compared to other methods. Possible violations of the model
assumptions are discussed and put in context of real-world data. After tree
inference, SNV data can be incorporated into the model prediction as well. The
manuscript is very well written and the method appears to be fast and to perform
favorably compared to other approaches.
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I would first like to commend the authors on the clarity of the majority of
their manuscript and the high degree of detail. It was a pleasure to read it. I
am further providing my detailed feedback and questions below.
Response: Thank you!

Comment: 1. Based on Eq. 2, it appears like the sampling probability of
a vertex v is both proportional to the likelihood of each sub-tree, expressed by
p(y—x(t),theta), as well as the number of possible sub-trees. The latter implies
that vertices with many children are more likely to be sampled than trees with
fewer children. Is this correct? Is this desired?
Response: It is correct that the index set of the summand in (1) will grow with
the arity of a node (number of children). This cannot be avoided as it follows
from the structure of the space of multifurcating trees (at this step of the deriva-
tion, we are asking the question “what is the mass of possible trees that can be
obtained with one edge insertion below v?”). In our context it is important to
allow multifurcation since we are in a regime where there may not be enough
markers to fully resolve all binary splits. Intuitively, it seems reasonable that
the prior hence implicitly “encourages” resolving high-arity multi-furcations. If
this behavior is not desired one could theoretically use a non-uniform prior over
trees, however, depending on the details of the non-uniform prior this may com-
plicate the design of marginalization for efficient MCMC sampling.

Comment: 2. How does the equation following l. 398, which posits that the
probability p(yc,l|xc,l, theta) of a vertex can be expressed as the product of prob-
abilities of all its children, relate to the original definition of p(yc,l|xc,l, theta)
given after l. 322, according to which children and parent nodes are indepen-
dent?
Response: The equation after l. 398, pbv, denotes the initialization of a re-
cursion relation that only holds at the leaves. At this point of the argument we
have not explained yet the relationship with p(yc,l|xc,l, θ). The relationship is a
bit involved and explained in the equations following “Putting it together..” So
the initialization of this recursion does not contradict the independence state-
ments in equations after l. 322.

Comment: 3. The transformation given in the equation after l. 413, which
results in a product over k factors, contains all possibilities for edge insertions
in sub-tree v, including the one in which no edge is inserted. Hence, vertices
whose existing configuration already has a high likelihood are, counterintuitively,
selected for edge insertion proportionately to this likelihood. I can imagine that,
at best, this would slow the convergence of the algorithm, but there might be
more deleterious consequences.
Response: In all scenarios, an edge will be inserted, however when b is a vector
with all elements equal to zero, then no cell will be selected to be moved under
the newly inserted edge.

Comment: 4. Regarding the inference of the consensus tree (section 9.4.5),
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I am not sure I understand well Eq. 6. It appears the authors are using a
generalized Bayes estimator by minimizing the posterior expected loss, as the
loss function is weighted with the posterior distribution that is given after l.
365. Is this correct?
Response: Modulo the typo raised in the next point (thank you, it is now
fixed), since the prior is proper, we are approximating the standard Bayes es-
timator (the terminology ‘generalized Bayes estimator’ is typically reserved for
situations where the prior is improper). We have added one more step, starting
the derivation from the definition of Bayes estimator and also simplified the
notation by changing π(t, dθ) to π(t, θ)dθ.

Comment: Second, it appears that then the parameter t in the argument of pi
should be t’.
Response: This is an astute observation by the reviewer and we have fixed
this typo in Equations (6) and (7).

Comment: Third, why did the authors choose to use the Bayes risk to de-
termine the tree, especially since it appears that the priors for t and theta are
anyway largely non-informative? Could they not just maximize the likelihood
p(y—x(t), theta)?
Response: We have added an experiment comparing our Bayes estimator to a
Maximum Likelihood Estimator (MLE). The new results show that our Bayes
estimator achieves a lower error rate compared to MLE and are described at
the end of Section 9.5.2.
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Comment: 5. In the benchmarking (Fig. 2d), I think the authors should
compare their method also to other existing methods, in particular SCARLET
from ref. [17] and MEDALT from ref. [18].
Response: We have added comparisons to two recently developed methods,
benchmarking them against sitka in three real datasets. For reasons described
below, the two additional methods we have added are MEDALT and medicc2.
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We have updated Figure 2d and section 2.2 to incorporate the new results. Note
that on one of the datasets (SA501, the dataset with the largest number of cells),
when provided with the integer copy number matrix as input, medicc2 did not
finish running after 5 days. Similarly, on the same dataset MEDALT ran out of
memory (we provided 144 GB of RAM memory). However, when we provided
the sitka-transformation matrix as input, both methods finished running.

Rationale of choice of additional baselines: sitka is designed for shallow
sequencing regimes where calling SNVs per cell would be difficult, but copy
numbers can be called reliably. In such cases, most SNVs will not be called in
most cells. However SCARLET, while correcting for CNAs, requires the same
SNV to be called in all cells.
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Comment: In this regard, I also find it interesting that a simple hierarchical
clustering method, UPGMA, shows such good performance, which is even largely
better than that of MrBayes, when using Youden’s index as a measure. Do the
authors know why this would be so? Could it be that the performance measure
is suboptimal?
Response: We hypothesize that MrBayes does not converge in our available
computational budget (several days). In line with this view, in the smallest
dataset, SA535 that has only 493 cells, MrBayes with binary input is the sec-
ond best performing method after sitka, and outperforms UPGMA. In the other
two datasets that have more cells, MrBayes performs worse.

Comment: 6. Fig. 1f shows leaves without cells or markers. Why and how
are these generated in the MCMC tree exploration scheme?
Response: Fig. 1f shows zoomed-in insets from panel e. Each inset depicts a
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subtree, where the red diamonds are marker nodes and the blue circles denote
single-cells. We have clarified this in the caption.

Comment: 7. Along similar lines, in l. 101 of the manuscript is stated that
”Markers placed at the leaves are interpreted as outliers, for example measured
CN change points that are false positives. We remove from the type I tree all
marker nodes that are leaf nodes, i.e., markers that are not present in any cells.”
Would it not be possible to always place a marker that was observed in only one
cell at the leaf corresponding to that cell?
Response: Yes, this scenario is in line with the perfect phylogeny assumption
and the corresponding marker node will be placed as a parent of the cell that
harbors the locus. However, such an event is likely to be removed in the pre-
processing.

Comment: Also, why are such outliers still observed (e.g. CN change points
that are false positives) if columns in y with relative density across cells less
than 5% were removed (l. 314)?
Response: It is true that in most scenarios (given more than 20 single-cells),
an event that is only observed in one single-cell is removed in the preprocessing
step. However, more prevalent outliers that pass the filtering preprocessing step
may occur. For instance, take a region of the genome that due to sequencing
artefacts presents multiple copy number events (all false positives). Such events
can pass the preprocessing filter.

Comment: 8. In the computation of p(y|x, theta) on p. 10, all entries (c,l)
are assumed independent. However, change points should be correlated with
some auto-correlation function with a decay rate proportional to the typical CN
lengths, i.e. Cov(yc,l, yc,l′)! = 0. Would it be feasible to incorporate this kind of
information in the algorithm?
Response: While it is conceptually possible to design a model incorporating
dependencies among change points, it will negatively affect the computational
runtime. More specifically, it is not obvious to us how the O(|L| + |C|) upper
bound cost of each MCMC iteration would be possible. It can be seen in Section
9.4.3 (Equations for ρv, in the bottom of page 13) that were yc,l not indepen-
dent, the Gibbs conditional probability of selecting a marker v will no longer
efficiently factorize.

Comment: 9. It appears like the FN and FP rates could be optimized instead
of set to default values (0.5 and 0.1, respectively). Are these defaults informed
or are they arbitrary?
Response: In all experiments, the FN and FP rates are sampled jointly (the
full Bayesian equivalent of optimizing over these parameters). The values 0.5
and 0.1 are prior hyperparameters and the actual FN and FP rates are inferred
in posterior inference.

Comment: 10. Regarding the number of possible trees derived after l. 352,
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how come the second factor in the second line of the equation is (|L| + 1)|C|?
Should there not be (L+1)!/(L+1−C)! possibilities to assign |C| cells to |L|+1
vertices?
Response: The expression (|L| + 1)|C| is correct. Note that the cells can be
assigned to any loci, that is, a tree with all cells assigned to one locus is sup-
ported. Moreover, the vertices and cells are all labeled and unique, therefore,
the assignment procedure amounts to selecting for each unique single-cell c, one
of the (L + 1) unique loci (L traits under study and the virtual node denoting
the root), which takes the form (L + 1) · (L + 1)· = (L + 1)C . The factorial
form of the formulae (L+ 1)!/(L+ 1−C)! would undercount the total number
of possible unique trees.

Comment: 11. In l. 356ff., it is stated “This simple prior has a useful property:
if a collection of say two splits are supported by m1 and m2 traits, then the
prior probability for an additional trait to support the first versus second split
is proportional to (m1 + 1,m2 + 1). Therefore, there is a “rich gets richer”
behaviour built-in into the prior”. How is this compatible with the prior being a
uniform prior (cf. l. 353 and formula)?
Response: The prior is uniform on the set of type I tree (Section 2.1), i.e.,
on the set of possible outputs of the two step process (Section 9.4.3). At the
same time, it is possible to group trees into equivalence classes and look at the
“induced prior” on these equivalence classes, i.e.,

induced prior(class) =
∑
t∈class

prior(t).

Specifically when discussing the “rich gets richer property”, we are consid-
ering the equivalence relation such that two type I trees t, t′ are in the same
equivalence class if and only if f(t) = f(t′), where f(.) consists in transform-
ing t into a type II tree and annotating each edge by the number of events on
that edge. Since there are different numbers of type I trees in different equiv-
alent classes, this means that the induced prior on these equivalence classes is
non-uniform.

We apologize for the lack of details in the initial submission. We have added
more details on that point in the manuscript.

3 Reviewer 2

Thank you very much for taking the time to read our manuscript.

Comment: This paper develops a new method for phylogenetic modeling and
Bayesian inference of cancer evolution that suggests being efficient when applied
to tens of thousands of high-resolution genomes from single cell whole genome
sequencing (scWGS).
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I think that the method clearly shows utility, but that it is not entirely clear
whether it outperforms alternative approaches. This, however, is mentioned in
the manuscript.
Response: We have added comparisons to two recently developed methods,
benchmarking them against sitka in three real datasets. We have updated Fig-
ure 2d and section 2.2 to incorporate the new results. Note that on one of the
datasets (SA501, the dataset with the largest number of cells), when provided
with the integer copy number matrix as input, medicc2 did not finish running
after 5 days. Similarly, on the same dataset MEDALT ran out of memory (we
provided 144 GB of RAM memory). However, when we provided the sitka-
transformation matrix as input, both methods finished running.

Comment: The study of synthetic experiments helps readers to navigate the
method and evaluated its impact and future utility, especially in light of cell
removal due to contamination. I am intersted in seeing future applications of
this method.
Response: Thank you! Motivated by this, we have expanded the discussion of
potential applications in the introduction.

4 Reviewer 3

We very much appreciate your helpful suggestions and comments regarding our
paper. Below are our point-by-point responses to your suggestions and com-
ments. The comments and questions are all included for convenience.

Comment: The authors of the manuscript present a new method for recon-
structing single cell phylogenies from previously inferred CNV data. Specifi-
cally, they propose a data transformation for CNV counts into discretized coarse
grained markers of changes, based on which the phylogenetic reconstruction is
performed efficiently. Importantly, the authors also propose a single point mu-
tation calling method that conditions on the CNV based phylogenies to better
resolve signal to noise problem. The method is compared to other state of art
methods on three single cell datasets.

The methods and algorithms are comprehensively presented.
Response: Thank you!

Comment: In general, the manuscript would benefit from introducing more
explanatory comments and brief motivations for introducing steps of the anal-
ysis, especially in the Results section (e.g. why do we need type I and type II
trees, what is the benefit of using change points, or even definition of perfect
phylogeny) so that non-expert readers can follow.
Response: We have expanded the introduction and the discussion sections.
Moreover, throughout the manuscript and in the supplementary materials, we
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have added definitions to multiple concepts.

Comment: However, I do have a major concern about the property of the sitka
transformation and the effect it has on the phylogeny recontruction that the au-
thors should adress. Each copy number variations comes with 2 breakpoints.
The sitka transformation, to my understanding, ends up treating copy num-
ber changes along the chromosome as independent events, and, effectively, the
markers of the beginning and the end of a copy number variation are not paired.
What is the impact of this on the phylogenies? Are the pairs of breakpoints
separated on the reconstructed phylogenies? If so, how distant they are? The
authors should discuss this point and present the relevant statistics on empirical
data.
Response: The reviewer is correct that our method ignores certain pairwise
dependencies, and we agree this is a critical point to discuss. To address this
point we have performed an additional set of experiments and highlighted this
point in the discussion section.

We now make this point the first one covered in our updated discussion. In
particular, we emphasize the fact that this artificial “duplication” of the events
having two input end-points can lead to the method being overconfident, i.e.,
outputting credible intervals that are smaller than they should be. This is partly
a reason for focusing more on point estimates (consensus trees) in the present
manuscript, which we expect are less affected by this phenomenon.

To further investigate this issue, we first make the observation that if we
subset the sitka markers to keep only those where the copy number is increasing
from left to right, we retain only one end point of each paired event. This creates
a smaller set of independent markers L′ ⊂ L. Next, we computed one sitka tree
t based on all L loci (which includes ignored pairwise dependencies), and one
sitka tree t′ based on L′ (a smaller set of independent loci). We then looked at
the proportion of identical entries in the matrices x(t′) compared to x(t), the
latter subsetted to the columns in L′.

We performed the experiment described above on the S90 datasets (de-
scribed in Section 9.5.3), and three noise regimes with increasing amounts
of noise injected: (I) where step (ii) in Section 9.5.3 is skipped; (II) uniform
noise parameters FPR and FNR drawn from uniform distributions on the in-
tervals (0.0005, 0.005), (0.005, 0.015) respectively, doubling noise parameters
drawn from a uniform distribution on (0.015, 0.035) distribution, jitter noise
parameters drawn from a uniform distribution on (0.15, 0.35); (III) uniform
noise parameters FPR and FNR drawn from uniform distributions on the in-
tervals (0.001, 0.01), (0.01, 0.03) respectively, doubling noise parameters drawn
from a uniform distribution on (0.03, 0.07) distribution, jitter noise parameters
drawn from a uniform distribution on (0.3, 0.7). All results are averaged over
15 datasets.

In all three regimes we observed a large overlap between t and t′, but this
overlap is negatively correlated with noise: in regime (I) we observed a mean
overlap of 0.99 (sd 0.004); in regime (II), a mean overlap of 0.97 (sd 0.009); in
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regime (III), a mean overlap of 0.76 (sd 0.18). The results support that in a
low to moderate noise regime, it is reasonable to ignore violation of pairwise
dependencies for the purpose of point estimation (consensus tree construction).
In the higher noise regime (and/or for construction of credible intervals), it
may be advantageous to build the two trees t and t′. We expect neither to
systematically outperform the other, the trade-off being that t is built from
more data but with independence violations, whereas t′ is built from less data
but without independence assumption violations. Our goodness-of-fit tests can
be used to select one of these two trees for final output.
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