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Abstract19

Dispersal, and in particular the frequency of long-distance dispersal (LDD) events, has strong im-20

plications for population dynamics with possibly the acceleration of the colonisation front, and for21

evolution with possibly the conservation of genetic diversity along the colonised domain. How-22

ever, accurately inferring LDD is challenging as it requires both large-scale data and a method-23

ology that encompasses the redistribution of individuals in time and space. Here, we propose24

a mechanistic-statistical framework to estimate dispersal from one-dimensional invasions. The25

mechanistic model takes into account population growth and grasps the diversity in dispersal pro-26

cesses by using either diffusion, leading to a reaction-diffusion (R.D.) formalism, or kernels, lead-27

ing to an integro-differential (I.D.) formalism. The latter considers different dispersal kernels28

(e.g. Gaussian, Exponential, and Exponential-power) differing in their frequency of LDD events.29

The statistical model relies on dedicated observation laws that describe two types of samples,30

clumped or not. As such, we take into account the variability in both habitat suitability and oc-31

cupancy perception. We first check the identifiability of the parameters and the confidence in32

the selection of the dispersal process. We observed good identifiability for nearly all parameters33

(Correlation Coefficient > 0.95
::::::::::
correlation

:::::::::::
coefficient

::::::
> 0.9 between true and fitted values), except34

for occupancy perception (Correlation Coefficient = 0.83−0.85). The dispersal process that is35

the most confidently identified is Exponential-Power (i.e. fat-tailed) kernel. We then applied our36

framework to data describing an annual invasion of the poplar rust disease along the Durance River37

valley over nearly 200 km. This spatio-temporal survey consisted of 12 study sites examined at38

seven time points. We confidently estimated that the dispersal of poplar rust is best described by39

an Exponential-power kernel with a mean dispersal distance of 2.01
:::::
1.94

:
km and an exponent40

3



parameter of 0.24 characterising a fat-tailed kernel with frequent LDD events. By considering the41

whole range of possible dispersal processes our method forms a robust inference framework. It can42

be employed for a variety of organisms, provided they are monitored in time and space along a43

one-dimension invasion.44
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1 Introduction47

Dispersal is key in ecology and evolutionary biology (Clobert et al., 2004). From an applied point48

of view, the knowledge of dispersal is of prime interest for designing ecological-based management49

strategies in a wide diversity of contexts ranging from the conservation of endangered species (e.g.,50

Macdonald and Johnson, 2001) to the mitigation of emerging epidemics (Dybiec et al., 2009; Fabre51

et al., 2021). From a theoretical point of view, the pattern and strength of dispersal sharply impact52

eco-evolutionary dynamics (i.e. the reciprocal interactions between ecological and evolutionary53

processes) (Miller et al., 2020). The features of dispersal have many implications for population54

dynamics (e.g. speed of invasion, metapopulation turnover; Soubeyrand et al., 2015; Kot et al.,55

1996), genetic structure (e.g. gene diversity, population differentiation; Edmonds et al., 2004; Fa-56

yard et al., 2009; Petit, 2011) and local adaptation (Gandon and Michalakis, 2002; Hallatschek and57

Fisher, 2014). Mathematically, the movement of dispersers (individuals, spores or propagules for58

example) can be described by a so-called location dispersal kernel (Nathan et al., 2012) that rep-59

resents the statistical distribution of the locations of the propagules of interest after dispersal from60

a source point. Since the pioneer works of Mollison (1977), much more attention has been paid to61

the fatness of the tail of the dispersal kernel (Klein et al., 2006). Short-tailed kernels (also referred62

to as thin-tailed) generate an invasion front of constant velocity, whereas long-tailed kernels (also63

referred to as fat-tailed) can cause an accelerating front of colonisation (Ferrandino, 1993; Kot et al.,64

1996; Clark et al., 2001; Mundt et al., 2009; Hallatschek and Fisher, 2014). Long-tailed kernels,65

characterised by more frequent long-distance dispersal (LDD) events than an exponential kernel66

that shares the same mean dispersal distance, can also cause a reshuf�ing of alleles along the col-67

onisation gradient, which prevents the erosion of genetic diversity (Nichols and Hewitt, 1994; Petit,68
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2004; Fayard et al., 2009) or leads to patchy population structures (Ibrahim et al., 1996; Bialozyt69

et al., 2006).70

Despite being a major issue in biology, properly characterising the dispersal kernels is a challen-71

ging task for many species, especially when dispersing individuals are numerous, small (and thus72

dif�cult to track) and move far away (Nathan, 2001). In that quest, mechanistic-statistical models73

enable a proper inference of dispersal using spatio-temporal datasets (Wikle, 2003a; Soubeyrand74

et al., 2009a; Roques et al., 2011; Soubeyrand and Roques, 2014; He�ey et al., 2017; Nembot75

Fomba et al., 2021) while allowing for the parsimonious representation of both growth and dispersal76

processes in heterogenous environments (Papa�̈x et al., 2022). They require detailed knowledge of77

the biology of the species of interest to properly model the invasion process. They combine a mech-78

anistic model describing the invasion process and a probabilistic model describing the observation79

process while enabling a proper inference using spatio-temporal data. Classically, the dynamics of80

large populations are well described by deterministic differential equations. Invasions have often81

been modelled through reaction-diffusion equations (Murray, 2002; Okubo and Levin, 2002; Shi-82

gesada and Kawasaki, 1997). In this setting, individuals are assumed to move randomly following83

trajectories modelled using a Brownian motion or a more general stochastic diffusion process. Des-84

pite their long standing history, the incorporation of reaction-diffusion equations into mechanistic-85

statistical approaches to estimate parameters of interest from spatio-temporal data essentially dates86

back to the early 2000s (e.g. Wikle, 2003a; Soubeyrand and Roques, 2014; Louvrier et al., 2020;87

Nembot Fomba et al., 2021). By contrast to reaction-diffusion equations, integro-differential equa-88

tions encode trajectories modelled by jump diffusion processes and rely on dispersal kernels, in-89

dividuals being redistributed according to the considered kernel (Fife, 1996; Hutson et al., 2003;90

Kolmogorov et al., 1937). This approach allows to consider a large variety of dispersal functions,91
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typically with either a short or a long tail (i.e. putative LDD events). As such it is more likely to92

model accurately the true organism's dispersal process. In the presence of long-distance dispersal,93

the biological interpretation of the estimated diffusion parameters with an R.D. equation would be94

misleading. However, integro-differential equations are numerically more demanding to simulate95

than reaction-diffusion equations. As far as we know, integro-differential equations have rarely96

been embedded into mechanistic-statistical approaches to infer dispersal processes in ecology (but97

see Szymánska et al., 2021 for a recently proposed application of a non-local model to cell prolifer-98

ation).99

100

Data acquisition is another challenge faced by biologists in the �eld, all the more that data con-101

�ned to relatively small spatial scales can blur the precise estimates of the shape of the kernels102

tail (Ferrandino, 1996; Kuparinen et al., 2007; Rieux et al., 2014). To gather as much information103

as possible, it is mandatory to collect data over a wide range of putative population sizes (from104

absence to near saturation) along the region of interest. Sharing the sampling effort between raw105

and re�ned samples to browse through the propagation front may improve the inference of spatial106

ecological processes (Gotway and Young, 2002). This way of sampling is all the more interesting107

as the probabilistic model describing the observation process in the mechanistic-statistical approach108

can handle such multiple datasets (Wikle, 2003b). However, inference based on multi-type data109

remains a challenging statistical issue as the observation variables describing each data type follow110

different distribution laws (Chagneau et al., 2011) and can be correlated or, more generally, depend-111

ent because they are governed by the same underlying dynamics (Bourgeois et al., 2012; Georgescu112

et al., 2014; Soubeyrand et al., 2018). This requires a careful de�nition of the conditional links113

between the observed variables and the model parameters (the so-called observation laws) in order114
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to identify and examine complementarity and possible redundancy between data types.115

116

In this article, we aim to provide a sound and uni�ed inferential framework to estimate dispersal117

from ecological invasion data using both reaction-diffusion and integro-differential equations. We118

�rst de�ne the two classes of mechanistic invasion models, establish the observation laws corres-119

ponding to raw and re�ned samplings, and propose a maximum-likelihood method to estimate their120

parameters within the same inferential framework. Then, to con�rm that each model parameter121

can indeed be ef�ciently estimated given the amount of data at hand (see Soubeyrand and Roques,122

2014), we perform a simulation study to check model parameters' identi�ability given the sampling123

design. We also aim to assess the con�dence level in the choice of the dispersal function as derived124

by model selection. Last, the inferential framework is applied to original ecological data describing125

the annual invasion of a tree pathogen (Melampsora larici-populina, a fungal species responsible126

for the poplar rust disease) along the riparian stands of wild poplars bordering the Durance River127

valley in the French Alps (Xhaard et al., 2012).128

2 Modelling one-dimensional invasion and observation processes129

2.1 A class of deterministic and mechanistic invasion models130

We model the dynamics of a population densityu(t;x) at any timet and pointx during an invasion131

using two types of spatially heterogeneous deterministic models allowing to represent a wide range132

of dispersal processes. Speci�cally, we considered a reaction-diffusion model (R.D.) and an integro-133

differential model (I.D.):134
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R.D.

8
>>>><

>>>>:

¶tu(t;x) = D¶xxu(t;x)+ r(x)u(t;x)
�

1�
u(t;x)

K

�
;

u(0;x) = u0(x);

I.D.

8
>>>><

>>>>:

¶tu(t;x) =
Z R

� R
J(x� y)[u(t;y) � u(t;x)] dy+ r(x)u(t;x)

�
1�

u(t;x)
K

�
;

u(0;x) = u0(x):

135

136

wheret varies in[0;T] (i.e. the study period) andx varies in[� R;R] (i.e. the study domain). Both137

equations exhibit the same structure composed of a diffusion/dispersal component and a reaction138

component. The reaction component,r(x)u(t;x)
�

1�
u(t;x)

K

�
in both equations, is parameterised139

by a spatial growth rater(x) that takes into account macro-scale variations of the factors regulat-140

ing the population density andK the carrying capacity of the environment. It models population141

growth. The diffusion/dispersal component models population movements either by a diffusion142

process (D¶xxu in R.D.) parameterised by the diffusion coef�cientD or by a dispersal kernel (J in143

I.D.). To cover a large spectrum of possible dispersal processes, we use the following parametric144

form for the kernelJ:145

J :=
t

2a G
� 1

t

� e� j z
a j t

(1)

with mean dispersal distancel := a
G

� 2
t

�

G
� 1

t

� . Varying the value oft leads to the kernels classically146

used in dispersal studies. Speci�cally,J can be a Gaussian kernel (t = 2; l = a =
p

p), an exponen-147

tial kernel (t = 1; l = a ) or a fat-tail kernel (t < 1; l = a G
�

2
t

�
=G

�
1
t

�
). Explicit formulas for148

the solutionu(t;x) of these reaction-diffusion/dispersal equations being out of reach, we compute a149

numerical approximationunum of u, which serves as a surrogate for the real solution. Details of the150

numerical scheme used to computeunum can be found in Appendix S1.151
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2.2 A conditional stochastic model to handle micro-scale �uctuations152

Among the factors driving population dynamics, some are structured at large spatial scales (macro-153

scale) and others at local scales (micro-scale). It is worth considering both scales when studying154

biological invasions. In the model just introduced, the termr(x) describes factors impacting pop-155

ulation growth rate at the macro-scale along the whole spatial domain considered. Accordingly,156

the functionu(t;x) is a mean-�eld approximation of the true population density at macro-scale.157

Furthermore, the population density can �uctuate due to micro-scale variations of other factors reg-158

ulating population densities locally (e.g. because of variations in the micro-climate and the host159

susceptibility). Such local �uctuations are accounted for by a conditional probability distribution160

onu(t;x), the macro-scale population density, which depends on the (unobserved) suitability of the161

habitat unit as follow. Consider a habitat uniti whose centroid is located atxi , and suppose that the162

habitat unit is small enough to reasonably assume thatu(t;x) = u(t;xi) for every locationx in the163

habitat unit. LetNi(t) denote the number of individuals ini at timet. The conditional distribution164

of Ni(t) is modelled by a Poisson distribution:165

Ni(t) j u(t;xi);Ri(t) � Poisson(u(t;xi)Ri(t)) ; (2)

whereRi(t) is the intrinsic propensity of the habitat uniti to be occupied by individuals of the166

population at timet. Thereafter,Ri(t) is called habitat suitability and takes into account factors like167

the exposure and the favorability of habitat uniti. The suitability of habitat uniti is a random effect168

(unobserved variable) and is assumed to follow a Gamma distribution with shape parameters � 2
169

and scale parameters 2:170

Ri(t) � Gamma(s � 2;s 2): (3)
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This parametrisation implies that the mean and variance ofRi(t) are 1 ands 2, respectively; that the171

conditional mean and variance ofNi(t) givenu(t;xi) areu(t;xi) andu(t;xi) + u(t;xi)2s 2, respect-172

ively; and that its conditional distribution is:173

Ni(t) j u(t;xi) � Negative-Binomial

0

@s � 2;
u(t;xi)s 2

1+ u(t;xi)s 2
1

1+ u(t;xi)s 2
:::::::::::::

1

A : (4)

2.3 Multi-type sampling and models for the observation processes174

During an invasion, the population density may range from zero (beyond the front) to the maximum175

carrying capacity of the habitat. To optimise the sampling effort, it may be relevant to carry out176

different sampling procedures depending on the population density at the sampling sites. In this177

article, we consider a two-stage sampling made of one raw sampling, which is systematic and one178

optional re�ned sampling adapted to our case study, the downstream spread of a fungal pathogen179

along a river (Figure 1). We consider that the habitat unit is a leaf. The fungal population is180

monitored in sampling sitess2 f 1; : : : ;Sg and at sampling timest 2 f t1; : : : ; tKg. Sampling sites are181

assumed to be small with respect to the study region, and the duration for collecting one sample182

is assumed to be short with respect to the study period. Thus, the (macro-scale) density of the183

population at sampling timet in sampling sites is constant and equal tou(t;zs) wherezs is the184

centroid of the sampling sites. Any sampling sites is assumed to contain a large number of leaves185

which are, as a consequence of the assumptions made above, all associated with the same population186

density function:u(t;xi) = u(t;zs) for all leavesi within sampling sites. Each observed tree and twig187

are assumed to be observed only once during the sampling period. Therefore, habitat suitabilities188

Ri(t) are considered independent in time.189
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The raw sampling is focused on trees, considered as a group of independent leaves regarding190

their suitabilities. This assumption can be made if the leaves observed on the same tree are suf�-191

ciently far from each other and represent a large variety of environmental conditions, and therefore192

habitat suitabilities (for example, leaves observed all around a tree will not have the same sun ex-193

position, nor the same humidity depending on their height and their relative positions to the trunk).194

In each sampling sites and at each sampling timet, a numberBst of trees are monitored for the195

presence of infection. We count the number of infected treesYst among the total numberBst of196

observed trees. In the simulations and the case study tackled below, the random variablesYst given197

u(t;xs) are independent and distributed under the conditional Binomial distributionf raw
st described198

in Appendix S2.2. Its success probability depends on the variabilities of (i) the biological process199

through the variance parameters 2 of habitat suitabilities, and (ii) the observation process through200

a parameterg. This parameter describes how the probabilities of leaf infection perceived by the201

person in charge of the sampling differ between trees from true probabilities (as informed by the202

mechanistic model). Such differences may be due, for example, to the speci�c con�guration of the203

canopy of each tree or to particular lighting conditions.204

The re�ned sampling is focused on twigs, considered as a group of connected leaves. Nearby205

leaves often encounter the same environmental conditions and, therefore, are characterised by sim-206

ilar habitat suitabilities represented byRi(t); see Equations (2–3). This spatial dependence was207

taken into account by assuming that the leaves of the same twig (considered as a small group of208

spatially connected leaves) share the same leaf suitability. Accordingly, suitabilities are considered209

as shared random effects. The re�ned sampling is performed depending on disease prevalence and210

available time. In sites at timet, Gst twigs are collected. For each twigg, the total number of211

leavesMstg and the number of infected leavesYstg are counted. In the simulations and the case212
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study tackled below, the random variablesYstg givenu(t;xs) are independent and distributed under213

conditional probability distributions denoted byf ref
st described in Appendix S2.3. The distribution214

f ref
st is a new mixture distribution (called Gamma-Binomial distribution) obtained using Equations215

(2–3) and taking into account the spatial dependence and the variance parameter of unobserved216

suitabilities (see Appendix S2.3).217

This sampling scheme and its vocabulary (leaves, twigs and trees) are speci�cally adapted to218

our case study for the sake of clarity. However, a wide variety of multi-type sampling strategies can219

be de�ned and implemented in the model, as long as it �ts a two-stage sampling as presented in220

Figure 1.221

2.4 Coupling the mechanistic and observation models222

The submodels of the population dynamics and the observation processes described above can be223

coupled to obtain a mechanistic-statistical model (also called physical-statistical model; Berliner,224

2003; Soubeyrand et al., 2009b) representing the data and depending on dynamical parameters,225

namely the growth and dispersal parameters. The likelihood of this mechanistic-statistical model226

can be written:227

L(q) =
S

Õ
s= 1

tK

Õ
t= t1

8
<

:
f raw
st (Yst)

 
Gst

Õ
g= 1

f ref
st (Ystg)

! 1(Yst> ȳ)
9
=

;
; (5)

where1(�) denotes the indicator function and expressions off raw
st and f ref

st adapted to the case study228

tackled below are given by Equations (S14) and (S18) in Appendix S2. The power1(Yst > ȳ) equals229

to 1 if Yst > ȳ and 0 otherwise, implies that the productÕGst
g= 1 f ref

st (Ystg) only appears if the re�ned230

sampling is carried out in sites. Moreover, such a product expression for the likelihood is achieved231

by assuming that leaves in the raw sampling and those in the re�ned sampling are not sampled from232
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the same trees. If this does not hold, then an asymptotic assumption like the one in Appendix S2.2233

can be made to obtain Equation (5), or the dependence of the unobserved suitabilities must be taken234

into account and another likelihood expression must be derived.235

3 Parameter estimation and model selection236

We performed simulations to check the practical identi�ability of several scenarios of biological237

invasions. Invasion scenarios represent a wide range of possible states of nature regarding the238

dispersal process, the environmental heterogeneity at macro-scale, and the intensity of local �uctu-239

ations at micro-scale. Even though the simulations are designed to cope with the structure of our240

real data set (Appendix S4), the results enable some generic insights to be gained. Speci�cally, we241

considered six sampling dates evenly distributed in time and 12 samplings sites evenly distributed242

within the 1D spatial domain. For each pair(date, site), we simulated the raw sampling of 100 trees243

and the re�ned sampling of 20 twigs. For the �fth sampling date, the raw sampling was densi�ed244

with 45 sampling sites instead of 12.245

The simulation study explored four hypotheses for the dispersal process: three I.D. hypotheses246

with kernelsJExp, JGaussandJExpP and the R.D. hypothesis. HypothesesJExp andJGaussstate that247

individuals dispersed according to Exponential and Gaussian kernels, respectively, with parameter248

qJ = ( l ). HypothesisJExpP states that individuals dispersed according to a fat-tail Exponential-249

power kernel with parametersqJ = ( l ; t ) andt < 1. Finally, hypothesis R.D. states that individual250

dispersal is a diffusion process parameterised byqJ = ( l ). The parameterl represents the mean251

distance travelled whatever the dispersal hypothesis considered. Moreover, macro-scale environ-252

mental heterogeneity was accounted for in the simulations by varying the intrinsic growth rate of253

14



the pathogen population (r) in space. Speci�cally, along the one-dimensional domain, we con-254

sidered two values ofr, namely a downstream valuerdw and an upstream valuerup, parameterised255

by qr = ( rdw;w) such thatrup = rdwew. Finally, micro-scale heterogeneity was accounted for in256

the simulations by varying the parameter of leaf suitabilitys 2 and tree perceptiong. Thereafter,257

q = ( qr ;qJ;g;s 2) denotes the vector of model parameters.258

3.1 Accurate inference of model parameters259

To assess the estimation method and check if real data that were collected are informative enough260

to ef�ciently estimate the parameters of the models (the so-called practical identi�ability), we pro-261

ceeded in three steps for each dispersal hypothesis: (i) a set of parameter valuesq = ( qr ;qJ;g;s 2)262

is randomly drawn from a distribution that encompasses a large diversity of realistic invasions, (ii)263

a data set with a structure similar to our real sampling is simulated givenq and (iii) q is estimated264

using the maximum-likelihood method applied to the simulated data set. These steps were repeated265

n = 100
::::::::
n = 160 times. Details on the simulation procedure, the conditions used to generate realistic266

invasions, and on the estimation algorithm are provided in Appendix S4.1. Practical identi�ability267

was tested by means of correlation coef�cients between the true and estimated parameter values268

(see Table 1, Appendix S2: Figures S2, S3, S4, S5).269

All the parameters de�ning the macro-scale mechanistic invasion model (rdw, w, l ) display270

very good practical identi�ability whatever the model, with correlation coef�cients above0.93.
::::
0.98271

:::::::
(except

:::
for

::::::
mean

:::::::::
dispersal

:::::::::
distance

::
l

::::::
under

::::::
R.D.,

:::::::::::
correlation

::::::::::
coef�cient

:::
of

::::::
0.94).

:
In the case of the272

Exponential-power dispersal kernel, the additional parameter representing the tail of the distribu-273

tion (t ) also displays a very good practical identi�ability with a correlation coef�cient of0.95
::::
0.93.274
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The parameter de�ning the micro-scale �uctuations,s 2, leads to particularly high correlation coef-275

�cients (0.99 for all the models). The identi�ability for the perception parameterg related to the276

observation process is somewhat lower (from0.83to 0.85
::::
0.91

::
to

:::::
0.97).277

3.2 Con�dence in the selection of the dispersal process278

Numerical simulations were next designed to test whether model selection could disentangle the279

true dispersal process (i.e. the dispersal hypothesis used to simulate the data set) from alternative280

dispersal processes (Appendix S4.2). The model selection procedure is
:::
the

:::::
most

:
ef�cient for the281

dispersal hypotheses Exponential-powerJExpP, ExponentialJExp, andreaction-diffusionR.D.,with282

70%,62%and58%
::::
with

:::::
78%

:
of correct kernel selection, respectively (Table 2). When the fat-tail283

Exponential-power kernel is not correctly identi�ed, it is mostly mistaken with the Exponential one284

(for 20%
:::::
17% of the simulations). In line with this, the probability of correctly selecting the kernel285

JExpP decreases when the parametert increases towards 1, the value for which the Exponential-286

power kernel coincides with the Exponential kernel (Figure 2). Importantly, when the Exponential-287

power kernel is correctly selected, we observe a large difference between its AIC and the AIC of288

the second best model (89.62
::::::
217:50

:
points on average). Conversely, when the invasion process289

is simulated underJExpP, but another kernel is selected, we observe a very small AIC difference290

(0.38
::::
0:76

:
point on average).Model selectiondoesnot allow to correctlyselectthe

::::
The

:::::::
model291

:::::::::
selection

::
is

:::
the

:::::
least

:::::::::
ef�cient

:::
for

::::
the

:
Gaussian kernelJGauss(Table 2). Indeed, with only26%

::::
45%292

of correct model selection, thiskernelis notbetteridenti�ed thanwith a randomdrawof oneof the293

four models,which would leadto 25% of correctestimations. Its correct identi�cation isgreatly294

improved
:::::::::
improved

::
to

:::::
80%

:
by densifying the sampling scheme (Appendix S4.5: Table S2). Finally,295
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note that when the invasion process is simulated under model R.D. orJGauss, a short-tail kernel is296

::::::
almost

:
always selected and, thus, never confounded with the fat-tail kernelJExpP.297

4 Case study: Invasion of poplar rust along the Durance River298

valley299

4.1 Study site300

We applied our approach to infer the dispersal of the plant pathogen fungusMelampsora larici-301

populina, responsible for the poplar rust disease, from the monitoring of an epidemic invading302

the Durance River valley. Embanked in the French Alps, the Durance River valley constitutes a303

one-dimension ecological corridor that channels annual epidemics of the poplar rust pathogenM.304

larici-populina (Xhaard et al., 2012). Each year the fungus has to reproduce on larches (Larix305

decidua) that are located in the upstream part of the valley only. This constitutes the starting point306

of the annual epidemics. Then the fungus switches to poplar leaves and performs several rounds of307

infection until leaf-fall. Each infected leaf produces thousands of spores that are wind-dispersed. In308

our case study,u(t;xs) is the density of fungal infection at timet at pointx on a poplar leaf. Each309

leaf has a carrying capacity of 750 fungal infections (Appendix S5).310

All along the valley, the Durance River is bordered by a nearly continuous riparian forest of311

wild poplars (Populus nigra). The annual epidemic on poplars thus spreads downstream through the312

riparian stands, mimicking a one-dimension biological invasion (Xhaard et al., 2012). A previous313

genetic study showed that the epidemic was indeed initiated in an upstream location where poplars314

and larches coexist (Prelles), and progresses along the valley (Becheler et al., 2016). In autumn,315
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the corridor is cleared for disease after leaf-fall. At 62 km downstream of the starting point of the316

epidemics, the Serre-Ponçon dam represents a shift point in the valley topology, with a steed-sided317

valley upstream and a larger riparian zone downstream. This delimitation led us to consider 2 values318

of growth ratesr along the one-dimensional domain:rup andrdw (see Appendix S4 for details).319

4.2 Monitoring of an annual epidemic wave320

In 2008, rust incidence was monitored every three weeks from July to November at 12 sites evenly321

distributed along the valley (Figure 3). Sites were inspected during seven rounds of surveys. For a322

unique date (Oct. 22), the raw sampling was densi�ed with 45 sites monitored instead of 12. We323

focused on young poplar trees (up to 2m high) growing on the stands by the riverside.324

Two monitorings were conducted, corresponding to the raw and re�ned sampling, as described325

in previous sections. For the raw sampling, we prospected each site at each date to search for rust326

disease by inspecting randomly distributed poplar trees (different trees at different dates for a given327

site). Depending on rust incidence and poplar tree accessibility, 40 to 150 trees (mean 74) were328

checked for disease. Each tree was inspected through a global scan of the leaves on different twigs329

until at least one infected leaf was found or after 30 s of inspection. The tree was denoted infected330

or healthy, respectively. This survey method amounts to minutely inspecting 10 leaves per tree,331

i.e. with the same ef�ciency of disease detection as through the re�ned sampling (see details of the332

statistical procedure in Appendix S3). The global scan procedure of the trees leads to equivalently333

surveying fewer and fewer leaves as the epidemic progresses. Optionally, when at least one tree334

was infected, and depending on available time, we carried out a re�ned sampling to collect more335

information on the variance in disease susceptibility (i.e. habitat suitability) among the sampling336
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domain. The re�ned sampling consisted in randomly sampling 20 twigs on different trees and337

recording, for each, the total number of leaves and the number of infected leaves.338

4.3 Dispersal and demographic processes ruling the epidemic wave339

Model selection was used to decipher which dispersal process was best supported by the data set340

for �ve initial parameter values. The large AIC difference in favour of hypothesisJExpP indicates341

that poplar rust propagules assuredly disperse according to an exponential-power dispersal kernel342

along the Durance River valley (Table 3). Note that for all kernels, the �ve initial parameter values343

lead to similar estimations.UndertheR.D. hypothesis,however,initial parametervaluescanlead344

to differentestimationsbecauseof local optima,but all AIC resultingfrom theR.D. hypothesisare345

higherthanAIC resultingfrom thethreedispersalkernels.346

The estimation of the parameters for the best model along with their con�dence intervals (Ap-347

pendix S4.3) are summarised in Table 4. The parameters of the Exponential-power kernel �rstly in-348

dicate that the mean distance travelled by rust spores is estimated at2:01
::::
1:94 km. Second, its mean349

exponent parametert is 0:24. This value, much lower than 1, suggests substantial long-distance350

dispersal events. We also estimated the growth rates of the poplar rust epidemics along the Durance351

River valley. From upstream to downstream, their mean estimates are0:084 and0:020
::::::
0:085

::::
and352

:::::
0:023, respectively. The estimate of the parameter of the observation model,g, is 5:21

::::
4:82. This353

parameter represents how perceived probabilities of leaf infection differ among trees from true prob-354

abilities. The estimated value of5:21
::::
4:82

:
indicates some variability in the perception of infected355

leaves, but this variability is moderate because the shape of the underlying Beta-Binomial distri-356

bution approaches the Binomial distribution (for which perception differences are absent) (Figure357
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4, row 1). By contrast, the estimated value of the micro-scale �uctuation variances 2 (1:09
::::
1:29)358

suggests a substantial variability in leaf suitability between twigs. This is evidenced by comparing359

the shape of the estimated Gamma-Binomial distribution with a situation with negligible differences360

in receptivity between twigs (Figure 4, row 2, cases 2 = 0:01).361

Model check consists in testing whether the selected model was indeed able –given the para-362

meter values inferred above– to reproduce the observed data describing the epidemic wave that363

invaded the Durance River valley in 2008. To do so, we assessed the coverage rate of the raw364

sampling data (proportions of infected trees) based on their 95%-con�dence intervals (Appendix365

S4.4, Figure 5). Over all sampling dates, the total coverage rate is high (0:75
::::
0:71), which indicates366

that the model indeed captures a large part of the strong variability of the data. By comparison,367

coverage rates given by modelsJExp andJGauss(0:69
:::::
0:68 and 0:67, respectively) show a poorer �t368

to the data, especially for the �rst sampling date (Figures S6, S7) where the epidemic intensity is369

underestimated upstream and overestimated downstream.370

5 Discussion371

This study combines mechanistic and statistical modelling to jointly infer the demographic and dis-372

persal parameters underlying a biological invasion. A strength of the mechanistic model was to373

combine population growth with a large diversity of dispersal processes. The mechanistic model374

was coupled to a sound statistical model that considers different types of count data. These ob-375

servation laws consider that habitat suitability and disease perception can vary over the sampling376

domain. Simulations were designed to prove that the demographic model can be con�dently selec-377

ted and its parameter values reliably inferred. Although the framework is generic, it was tuned to �t378
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the annual spread of the poplar rust fungusM. larici-populinaalong the Durance River valley. This379

valley channels every year the spread of an epidemic along a one-dimensional corridor of nearly380

200 km (Xhaard et al., 2012; Becheler et al., 2016). The monitoring we performed enables to build381

a comprehensive data set at a large spatial scale, which is mandatory to precisely infer the shape of382

the tail of dispersal kernels (Ferrandino, 1996; Kuparinen et al., 2007). A widely used alternative to383

the mechanistic-statistical approaches is to consider purely correlative approaches. However, the es-384

timated parameters de�ning the strength of the temporal and spatial dependencies (as estimated for385

example using R-INLA package approach, Rue et al., 2009) will not allow to distinguish between386

the different shapes of dispersal kernels, which was the main goal of our work.387

5.1 Estimation of the dispersal kernel of the poplar rust388

This study provides the �rst reliable estimation of the dispersal kernel of the poplar rust fungus.389

Dispersal kernels are �rstly de�ned by their scale, which can be taken to correspond to the mean390

dispersal distance. The mean dispersal distance obtained from the best model is2:01
::::
1:94

:
km with391

a 95% con�dence interval ranging from1:76 to 2:27
::::
1:78

::
to

:::::
2:12

:
km. A non-systematic literature392

review identi�ed only eight studies reporting dispersal kernels for plant pathogens that used data393

gathered in experimental designs extending over regions bigger than 1 km (Fabre et al., 2021). The394

mean dispersal distances of the four fungal pathosystems listed by these authors are 213 m for the395

ascospores ofMycosphaerella �jiensis(Rieux et al., 2014), 490 m for the ascospores ofLepto-396

sphaeria maculans(Bousset et al., 2015), 860 m forPodosphaera plantaginis(Soubeyrand et al.,397

2009a) and from 1380 to 2560 m forHymenoscyphus fraxineus(Grosdidier et al., 2018). Our estim-398

ates for poplar rust are in the same range as the one obtained at regional scale forHymenoscyphus399
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fraxineus, the causal agent of Chalara ash dieback (Grosdidier et al., 2018).400

401

Dispersal kernels can be further de�ned by their shape. We show that the spread of poplar402

rust is best described by a fat-tailed Exponential-power kernel. The thin-tailed kernels considered403

(Gaussian and exponential kernels) were clearly rejected by model selection. These results are in404

accordance with the high dispersal ability and the long-distance dispersal events evidenced in this405

species by population genetics analyses (Barr�es et al., 2008; Becheler et al., 2016). Rust fungi are406

well-known to be wind dispersed over long distances (Brown and Hovmøller, 2002; Aylor, 2003).407

Recently, Severns et al. (2019) gathered experimental and simulation evidence that supports that408

wheat stripe rust spread supports theoretical scaling relationships from power law properties, an-409

other family of fat-tail dispersal kernel. In fact, many aerially dispersed pathogens are likely to410

display frequent long-distance �ights as soon as their propagules (spores, insect vectors) escape411

from plant canopy into turbulent air layer (Ferrandino, 1993; Pan et al., 2010). Accordingly, four412

of these eight studies listed by Fabre et al. (2021) lent support to fat-tailed kernels, including plant413

pathogens as diverse as viruses, fungi, and oomycetes.414

415

5.2 Effect of fat-tailed dispersal kernels on eco-evolutionary dynamics416

The dynamics produced by the mechanistic integro-differencial models we use strongly depends417

on the tail of the dispersal kernel. Namely, when the equation is homogeneous (i.e. when the418

model parameters do not vary in space, leading tor(x) = r), it is well known that for any thin-tailed419

dispersal kernelJ such that
Z

R
J(z)el jzjdz< + ¥ for somel > 0, the dynamics ofu(t;x) is well420
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explained using a particular solution called travelling wave. In this case, the invading front described421

by the solutionu(t;x) moves at a constant speed (Aronson and Weinberger, 1978). By contrast, for a422

fat-tailed kernel, these particular solutions do not exist anymore, and the dynamic ofu(t;x) describes423

an accelerated invasion process (Medlock and Kot, 2003; Garnier, 2011; Bouin et al., 2018). Here,424

we show that the dynamics of the poplar rust is better described as an accelerated invasion process425

rather than a front moving at a constant speed. Such accelerating wave at the epidemic front has426

been identi�ed for several fungal plant pathogens dispersed by wind, includingPuccinia striiformis427

and Phytophthora infestansthe wheat stripe rust and the potato late blight, respectively (Mundt428

et al., 2009). However, it should be stated that fat-tailed kernels are not always associated with429

accelerated invasion processes. Indeed, fat-tailed kernels can be further distinguished depending on430

whether they are regularly varying (e.g. power law kernels) or rapidly varying (e.g. Exponential-431

power kernels) (Klein et al., 2006). Mathematically, it implies that power law kernels decrease432

even more slowly than any Exponential-power function. Biologically, fat-tailed Exponential-power433

kernels display rarer long-distance dispersal events than power law kernels. On the theoretical434

side, the kernel's properties subtly interact with demographic mechanisms such as Allee effects435

to possibly cancel the acceleration of invasion. With weak Allee effects (i.e. the growth rate is436

density dependent but still positive), no acceleration occurs with rapidly varying kernels whereas an437

acceleration could be observed for some regularly varying kernels, depending on the strength of the438

density dependence (Alfaro and Coville, 2017; Bouin et al., 2021). For strong Allee effects (i.e. a439

negative growth rate at low density), no acceleration can be observed for all possible kernels (Chen,440

1997). On the applied side, whether or not the epidemic wave is accelerating sharply impacts the441

control strategies of plant pathogens (Filipe et al., 2012; Ojiambo et al., 2015; Fabre et al., 2021).442
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5.3 Con�dence in the inference of the dispersal process443

The inference framework we developed is reasonably ef�cient in estimating the dispersal process444

with frequent long-distance dispersal events as generated by Exponential-power dispersal kernels.445

The numerical experiments clearly show that the lower the exponent parametert of the Exponential-446

power kernel, the higher the con�dence in its selection.447

Conversely, the identi�cation of the dispersal process is less accurate with thin-tail kernels.448

The requirement for improving the capacity to distinguish between thin-tail kernels may lie in the449

sampling scheme. Here, our sampling sites are regularly spaced, over a large sampling domain of450

200 km, which is better suited to monitor long-distance dispersal (Kuparinen et al., 2007). Sampling451

schemes with more frequent data in both time and space (or nested spatial sampling) might improve452

kernel identi�cation.453

We clearly observed that integro-differential models with Gaussian dispersal kernel on the one454

hand and reaction-diffusion equation on the other hand are well identi�ed with our estimation pro-455

cedure when the time and space sampling is dense enough. This result may at �rst appear striking as456

a common belief tends to consider that diffusion amounts to a Gaussian dispersal kernel. However,457

these two models represent different movement processes (Othmer et al., 1988). In addition, clas-458

sical macroscopic diffusion, which is mainly based on Brownian motion (Othmer et al., 1988), often459

ignores the inherent variability among individuals' capacity of movements and as a consequence460

does not accurately describe the dispersal at the population scale (Hapca et al., 2009). While it is461

reasonable to assume that a single individual disperses via Brownian motion, this assumption hardly462

extends to all individuals in the population. Accordingly, we believe that integro-differential mod-463

els are better suited to take into account inter-individual behaviour as the dispersal kernel explicitly464
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models the redistribution of individuals.465

5.4 Robustness and portability of the method466

A strength of the approach proposed is the detailed description of the observation laws in the stat-467

istical model. The derivation of their probability density functions allows to obtain an analytical468

expression of the likelihood function. Model inference was however not straightforward due to469

local optimum issues. In order to achieve satisfying computational ef�ciency, we developed anad470

hoc hybrid strategy initiated from 20 initial values and combining the two classical Nelder-Mead471

and Nlminb optimisation algorithms. However, the framework of hierarchical statistical models472

(Cressie et al., 2009), whose inference is often facilitated by Bayesian approaches, could likely be473

mobilised to improve model �t. In particular, although the coverage rate of the tree sampling was474

correct, it could be further improved by relaxing some hypotheses. The orange-coloured uredinia475

being easily seen on green leaves, we assumed that the persons in charge of the sampling perfectly476

detect the disease as soon as a single uredinia is present on a leaf. However, even in this context,477

observation errors are likely present in our dataset as in any large spatio-temporal study. The latent478

variables used in hierarchical models are best suited to handle the fact that a tree observed to be479

healthy can actually be infected. False detection of infection could also be taken into account. This480

could make sense as a sister species,M. alli-populina, not easily discernible fromM. larici-populina481

in the �eld, can also infect poplar leaves. This species can predominate locally in the downstream482

part of the Durance River valley. This could have led to over-estimate the disease severity at some483

locations. Yet, all infected leaves from twigs were collected and minutely inspected in the lab under484

a Stereo Microscope (25 magni�cation) to check for species identi�cation.485
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More generally, the statistical part of the mechanistic-statistical approaches developed could be486

transposed to a wide range of organisms and sampling types. Sharing the sampling effort between487

raw and re�ned samples improves the estimations. The two distinct types of sampling (sampling488

of random leaves in trees, and of leaves grouped within twigs) apply to a wide range of species,489

which local distribution is aggregated into patches randomly scattered across a study site. Any490

biological study with two such distinct sampling types (as described in Figure 1) would �t the491

proposed statistical model. One can for example scale up the sampling by considering the plant492

(instead of the leaf) as the basic unit. Moreover, the framework naturally copes with the diversity493

of sampling schemes on the ground such as the absence of one sample type for all or part of the494

sampled sites and dates. Finally, we used the �rst sampling date to estimate independently the initial495

population densitiesu(0;x) that were then �xed among all simulated epidemics. Future works could496

as well jointly estimateu(0;x) as part ofq.497

The mechanistic part of the model could also handle a wider diversity of hypotheses. First, the498

model can be adapted to take into account a wider range of dispersal kernels, such as regularly499

varying kernels (see above). Second, the model can also easily be adapted to take into account para-500

meter heterogeneity in time and space of its parameters. Similarly, one may easily assume that the501

growth rate depends on daily meteorological variables. Finally, we ignore the in�uence of the local502

�uctuations of the population size on the macro-scale density of the population when stochastic503

�uctuations can in�uence epidemic dynamics (Rohani et al., 2002). Here, we neglect this in�uence504

by considering that the average population size is relevant when habitat units are aggregated. Re-505

laxing this hypothesis could be achieved by incorporating stochastic integro-differential equations.506

The inference of such models is currently a front of research.507
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5.5 Future directions508

As biological invasions are regularly observed retrospectively, carrying out spatio-temporal monit-509

oring is often highly dif�cult, when possible. A small number of longitudinal temporal data makes510

model inference very dif�cult, in particular for its propensity to properly disentangle the effect511

of growth rate and dispersal. Incorporating genetic data into the framework proposed here is a512

challenge that must be met to get around this problem. Indeed, colonisation and demographic ef-513

fects such as Allee effect generate their own speci�c genetic signatures (Dennis, 1989; Lewis and514

Kareiva, 1993; Miller et al., 2020). Similarly, genetic data could help to identify the dispersal kernel515

underlying the invasion process, as the population will exhibit an erosion of its neutral diversity with516

a thin-tailed kernel (Edmonds et al., 2004; Hallatschek et al., 2007). Conversely, genetic diversity517

can be preserved all along the invasion front with a fat-tailed kernel, because of the long-distance518

dispersal of individuals from the back of the front, where genetic diversity is conserved (Fayard519

et al., 2009; Bonnefon et al., 2014).520
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Tables737

Table 1: Model practical identi�ability. Numbers indicate the coef�cient of correlation between

the true and estimated parameter values for the four models corresponding to the four dispersal

processes (JExp, JGauss, JExpP and R.D.) from100
:::
160

:
replicates. High correlation between true

and estimated parameters indicates a good practical identi�ability. The standard deviations of the

coef�cients of correlation, estimated with a bootstrapping method, are indicated in brackets. Correl-

ation coef�cients and standard deviations are given for natural scale for parameterw, and logarithm

scales for parametersrdw, g, l , t , ands 2.

Parameter Description JExp JGauss JExpP R.D.
rdw Growth rate downstream 0:99(1:10� 3)

:::::
0.997

::::::::
(0.001) 0:99(1:10� 3)

:::::
0.997

::::::::
(0.001) 0:99(2:10� 3)

:::::
0.992

::::::::
(0.004) 0:93(6:10� 2)

:::::
0.991

::::::::
(0.003)

:

w Growth rate modulator 0:99(< 10� 3)
::::::
0.997

:::::::
(0.001)

:
0:99(< 10� 3)

::::::
0.992

:::::::
(0.003)

:
0:99(1:10� 3)

:::::
0.994

::::::::
(0.002) 0:99(1:10� 3)

:::::
0.995

::::::::
(0.002)

:

l Mean dispersal distance 0:99(5:10� 3)
:::::
0.983

::::::::
(0.007) 0:98(8:10� 3)

:::::
0.993

::::::::
(0.004) 0:99(1:10� 3)

:::::
0.983

::::::::
(0.006) 0:95(2:10� 2)

:::::
0.941

::::::::
(0.023)

:

t Kernel exponent NA NA 0:95(1:10� 2)
:::::
0.927

::::::::
(0.019) NA

g Tree perception 0:85(4:10� 2)
:::::
0.969

::::::::
(0.006) 0:83(4:10� 2)

:::::
0.966

::::::::
(0.006) 0:83(5:10� 2)

:::::
0.966

::::::::
(0.006) 0:84(3:10� 2)

:::::
0.910

::::::::
(0.018)

:

s 2 Variance in leaf suitability 0:99(1:10� 3)
:::::
0.996

::::::::
(0.001) 0:99(< 10� 3)

::::::
0.997

:::::::
(0.001)

:
0:99(< 10� 3)

::::::
0.997

:::::::
(0.001)

:
0:99(< 10� 3)

:::::
0.994

::::::::
(0.001)
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Table 2: Ef�ciency of model selection using Akaike information criterion (AIC). The four �rst

columns indicate the proportion of cases, among50
:::
60 replicates, where each tested model was

selected using AIC, given that data sets were generated under a particular model (i.e. true model).

ColumndAICtrue (resp. dAICwrong) indicates the mean difference between the AIC of the model

selected when the model selected is the true one (resp. when the model selected is not the true

model) and the second best model (resp.being the true model or not).

Selected Model
JExp JGauss JExpP R.D. dAICtrue dAICwrong

True Model
JExp 0.62

::::
0.50 0.22

::::
0.32

:
0.06

::::
0.05

:
0.10

::::
0.13

:
0.84

::::
0.90

:
0.74

::::
1.10

JGauss 0.34
::::
0.25

:
0.26

::::
0.45 0.00

::::
0.02

:
0.40

::::
0.28

:
1.08

::::
1.30

:
0.55

::::
0.67

JExpP 0.20
::::
0.17

:
0.04

::::
0.05

:
0.70

::::
0.78 0.06

:
0 89.62

::::::
217.50 0.38

::::
0.76

R.D.
::::
0.22 0.18 0.24

:
0 0.00

:::::
0.60 0.58

::::
2.37

:
0.710.23

::::
0.33
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Table 3: Model selection for the epidemic of poplar rust along the Durance River valley. The Akaike

information criteria are indicated for each model �tted to the real data set. The model best supported

by the data is indicated in bold. AICmedianand AICsd represent the median and standard deviation

among the AIC obtained from �ve initial parameter values.

Dispersal AICmedian AICsd
JExp 5476

::::
5461

:
0.68

::::
5.81

:

JGauss 5510
::::
5493

:
1.03

::::
0.15

:

JExpP 5179
::::
5163 1.32

::::
0.01

R.D. 6303
::::
6190

:
655.60

:::::
0.03
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Table 4: Statistical summary of the inference of the parameters for the model best supported by the

real data setJExpP. We used the vector of parametersq giving the lowest AIC value in the previous

model selection procedure as initial parameter values of theRfunctionmle2, to obtain maximum

likelihood estimates of the vector of parametersq̂ and of its matrix of variance-covarianceå̂ . Sum-

mary statistics were derived from 1,000 random draws from the multivariate normal distribution

with parameterŝq andå̂ (see Appendix S4.3). Columns Estimate,q� 2:5% andq� 97:5% repres-

ent the estimated value of each parameter and the quantiles 2:5% and 97:5%, respectively.

Parameter Description q� 2:5% Estimate q� 97:5%
rup Growth rate upstream 0.0312

:::::::
0.0786

:
0.0844

:::::::
0.0853

:
0.191

::::::
0.0897

:

rdw Growth rate downstream 0.0114
:::::::
0.0143

:
0.0203

:::::::
0.0230

:
0.0289

:::::::
0.0311

:

l Mean dispersal distance 1.76
:::::
1.78 2.01

:::::
1.94 2.03

:::::
2.12

t Kernel exponent 0.220
::::::
0.226 0.242

::::::
0.243 0.263

::::::
0.260

g Tree perception 3.21
:::::
3.49 5.21

:::::
4.82 6.77

:::::
6.11

s 2 Variance in leaf suitability 0.987
::::
1.23

:
1.09

:::::
1.29 1.21

:::::
1.36
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Figures738

Figure 1: Two-stage sampling on a sampling site, with one systematic raw sampling (on the left)
and one optional re�ned sampling (on the right). Each square represent a leaf, which can be non
infected, infected but not detected, or infected and detected. Each group of spatially grouped leaves
represent a tree. Each tree already observed during the raw sampling are not available (and thus
represented in grey) for the re�ned sampling, where connected leaves in twigs are observed.
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Figure 2: Logistic regression of the proportion of correct model selection of dispersalJExpP as a
function of t . Dots represent the values oft used for the50

:::
60

:
replicates of simulated dispersal

modelJExpP, and the estimated dispersal model (1 for a correct model selection ofJExpP and 0 for
a wrong model selection). The blue line corresponds to the predicted value of the proportion of
correct model selectionJExpP as a function oft , and the grey area corresponds to the con�dence
envelope at 95%.
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Figure 3: Poplar rust epidemic wave along the Durance River valley in 2008. The larch distribution
area is represented in dark green, wild poplar riparian stands in pale green. The 12 study sites are
represented by the green squares. Orange dots describe the evolution of the poplar rust epidemic
through time (7 rounds of disease notation) and space (12 studied sites). Dot size is proportional to
rust disease incidence assessed from the re�ned sampling.
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Figure 4: Distributions of the number of infected leaves in a tree and of the number of infected
leaves in a twig, for increasing densities of infectionu(t;x), and contrasted levels of environmental
heterogeneitys 2 andg. The number of infected leaves in a tree follows a Beta-Binomial distribution
(Eq. (S12)) withs 2 = 1:09

:::::::::
s 2 = 1:29. Its density is plotted for three tree perceptionsg: 5:21

::::
4:82

(estimated value on the real data set), 10 (intermediate value) and 60 for which the Beta-Binomial
distribution is approaching a Binomial distribution. The number of infected leaves in a twig follows
a Gamma-Binomial distribution (Eq. (S18)). Its density is plotted for three leaf suitabilitiess 2: 1:09

::::
1:29

:
(estimated value on the real data set), 5 (a higher value) and 0:01 a value lowering variability

in leaf suitability between twigs (whens 2 tends to 0, all twigs share the same leaf suitability).

46



Figure 5: Model check under the selected dispersal modelJExpP: Coverage rates for the raw
sampling. Each sampling date is represented on a separate graph. Sampling 1 is not represen-
ted because it corresponds to the initial condition of the epidemics for all simulations. Blue areas
correspond to the pointwise 95% con�dence envelopes for the proportion of infected trees, grey
intervals correspond to the 95% prediction intervals at each site,i.e. taking into account the obser-
vation laws given the proportion of infected trees. Red points correspond to the observed data. Only
four observations are available for sampling 7 because at this date (November 13) the leaves had
already fallen from the trees located upstream the valley. The total coverage rate over all sampling
dates is0:75

::::
0:71.
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S1 Numerical scheme

We use an implicit Euler scheme combined with a �nite difference scheme (see Allaire, 2005 for

details) to compute the solutionu(t;x) of the reaction-diffusion equation over[� R;R] � [0;T], with

2 � R the length of the modelled environment, andT the duration of the modelled process. For

the integro-differential equation, we use an explicit Euler scheme. More precisely, we perform a

standard explicit Euler time discretisation of the equation:

¶u
¶t

(t;x) �
u(t + d;x) � u(t;x)

d
(S1)

that leads to:

u(tn+ 1;x) = u(tn;x)+ d
� Z R

� R
J(x� y)[u(tn;y) � u(tn;x)] dy

�

+ dr(x)u(tn;x)
�

1�
u(tn;x)

K

� (S2)

wheref tn = nd = nT=N : n = 0; : : : ;Ng is a series of increasing times separated byd = T=N > 0,

andN is the number of time steps in the series. For the space discretisation, we de�ne a regular grid

f xi = � R+ ie = � R+ 2Ri=I : i = 0; : : : ; Ig with I + 1 points separated bye = 2R=I > 0. We make

the following approximation for allx in [� R;R]:

u(tn;x) �
I

å
i= 0

u(tn;xi)1[xi ;xi+ e)(x) (S3)

wherex 7! 1[xi ;xi+ e)(x) is the indicator function that gives 1 ifx 2 [xi ;xi + e), 0 otherwise. Based on

this approximation, we only need to computeu(t;x) at pointsxi , i = 0; : : : ; I . Plugging Approxima-

ii



tion (S3) in the integral of Equation (S2) computed forx = xi yields:

Z R

� R
J(xi � y)[u(tn;y) � u(tn;xi)] dy

�
Z R

� R
J(xi � y)

" 
I

å
j= 0

u(tn;x j )1[x j ;x j+ e)(y)

!

� u(tn;xi)

#

dy

=

 
I

å
j= 0

u(tn;x j )
Z R

� R
J(xi � y)1[x j ;x j+ e](y) dy

!

�
�

u(tn;xi)
Z R

� R
J(xi � y)dy

�

� e

 
I

å
j= 0

u(tn;x j )J(xi � x j )

!

� e u(tn;xi)
I

å
j= 0

J(xi � x j )

(S4)

Let us de�ne the matrixJin := ( J(xi � x j ))0� i; j � I whose element(i; j) is Jin
i j = J(xi � x j ). We

get the following numerical scheme:

u(tn+ 1;xi) = u(tn;xi) + de

"
I

å
j= 0

Jin
i j u(tn;x j ) � u(tn;xi)

 
I

å
j= 0

Jin
i j

!#

+ dr(xi)u(tn;xi)
�
1�

u(tn;xi)
K

� (S5)

By de�ning the vectorsU(tn) = ( u(tn;xi))0� i� I , R = ( r(xi))0� i� I and1 = ( 1)0� i� I , we have to

solve the linear system:

U(tn+ 1) = U(tn) + de
�

JinU(tn) � U(tn) � (Jin1)
	

+ df R � U(tn)g �
��

1�
U(tn)

K

��
(S6)

where� is the element-wise multiplication operator.
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S2 Distributions of the population measurements

S2.1 Term designations for the sampling units

In our biological application, a poplar leaf represents a habitat unit, a twig represents a group of

habitat units, and a tree represents a habitat bloc. For clarity, we refer to leaves, twigs and trees

in the following explanations. We call a sampling site a surveyed area along the valley, containing

several hundreds of trees. Further adaptations of this model to other sampling units would only

require adapting this initial vocabulary (Figure 1).

S2.2 Raw sampling

In the raw sampling, trees represent the sampling units, andBst trees are observed in sites at time

t. For each treeb 2 f 1; : : : ;Bstg, we measure the presence/absence of the pathogen by monitoring

an equivalent number ofM leaves withinb (see Appendix S3 below for the determination ofM). A

tree is infected if at least one pathogen lesion has been detected, in at least one leaf of the tree. The

observation in sitesat timet is the numberYst of infected trees.

Now, let us derive the probabilistic law of the presence/absence of the pathogen in any tree

b observed in sites at timet. In this paragraph, subscriptss, t, andb are generally omitted to

avoid cumbersome notation. We �rst remind that the numbers of pathogen lesionsNi(t) in the leaf

i 2 f 1; : : : ;Mg observed in treeb, givenRi(t) andu(t;xs), are independent and Poisson distributed

(see Eq. (2) in the main text):

Ni(t) j u(t;xs);Ri(t) �
indep.

Poisson(u(t;xs)Ri(t)) (S7)
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In the raw sampling,M leaves are sampled at different locations on the tree (i.e. they belong to

different groups, referred to as twigs), but further information about the twigs is not known. Thus,

in the following, we take into account the twig structure without exploiting twig information. The

leaves of a given twigg on treeb share at timet the same suitabilityRg(t), which is unobserved and

Gamma distributed like in Eq. (3) in the main text (for all leavesi in twig g, Ri(t) = Rg(t)). Given

the suitabilitiesf Rg(t) : g = 1; : : : ;Gg of twigs which compose treeb and given the absence of data

about the twigs,Ri(t) (i 2 f 1; : : : ;Mg) are independent and identically distributed under the discrete

empirical probability distribution:

F̂G(r) =
1
G

G

å
g= 1

1(r � Rg(t)) (S8)

where1(�) is the indicator function. Therefore,Ni(t) (i 2 f 1; : : : ;Mg) givenf Rg(t) : g = 1; : : : ;Gg

andu(t;xs) are independent and their probability distribution is, using Eqs. (S7)–(S8):

P[Ni(t) = n j u(t;xs); f Rg(t) : g= 1; : : : ;Gg] =
1
G

G

å
g= 1

exp(� u(t;xs)Rg(t))
(� u(t;xs)Rg(t))n

n!
(u(t;xs)Rg(t))n

n!:::::::::::::::

(S9)

The suitabilityRg(t) being Gamma distributed with shape and scale parameterss � 2 ands 2, re-

spectively, the right-hand-side of Eq. (S9) is a Monte Carlo approximation of the integral:

Z

R+

exp(� u(t;xs)r)
(� u(t;xs)r)n

n!
(u(t;xs)r)n

n!::::::::::

1

(s 2)s � 2G(s � 2)
rs � 2� 1e� r=s 2

dr

=
G(n+ s � 2)
(n!)G(s � 2)

�
1�

u(t;xs)
u(t;xs) + s � 2

� s � 2 �
u(t;xs)

u(t;xs) + s � 2

� n
(S10)

which coincides with the probability distribution of the Negative–Binomial law (i.e. the Gamma-
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Poisson mixture distribution) given by Eq. (4) in the main text. The largerG, the more precise the

approximation. Consequently,Ni(t) (i 2 f 1; : : : ;Mg) givenu(t;xs) are asymptotically independent

and distributed under the Negative–Binomial distribution given by Eq. (4) in the main text. Based

on this approximation, the infections of leaves from treeb in site s at timet are asymptotically

independent and distributed under Bernoulli distributions with success probability:

pleaf
st = P(Ni(t) > 0 j u(t;xs))

= 1� P(Ni(t) = 0 j u(t;xs))

= 1� (1+ u(t;xs)s 2
:: )� 1=s 2

(S11)

The people who carried out the sampling observed a numberM of leaves on treeb. Due to the

particular con�guration of the foliage of each tree, we assumed that the numberYleaf
stb of infected

leaves among theM leaves observed in treeb is approximately distributed under a Beta-Binomial

distribution with meanMpleaf
st and tree perception parameterg:

Yleaf
stb j u(t;xs) � approx: Beta-Binomial(M; pleaf

st ;g) (S12)

Accordingly, the probability, asperceivedby people in charge of the sampling, of leaf infection

on the set ofM leaves observed on a given tree, is distributed according to a Beta distribution. The

Beta distribution is centred around the true probability of leaf infectionpleaf
st and allowsperceived

probability to vary from tree to tree depending on the tree perception parameterg. It follows that

the infection of treeb is approximately distributed under the Bernoulli distribution with success
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probability:

ptree
st = P(Yleaf

stb > 0 j u(t;xs))

= 1� P(Yleaf
stb = 0 j u(t;xs))

= 1�
Beta[gpleaf

st ;M + g(1� pleaf
st )]

Beta[gpleaf
st ;g(1� pleaf

st )]

(S13)

wherepleaf
st is given by S11 and Beta represents the beta function. It follows that the probability

distribution functions of the numberYtree
st of infected trees infected among theBst trees observed

satisfy, for all sampling sitessand sampling timest:

f raw
st (y) = P[Ytree

st = y j u(t;xs)]

= fBinomial(Bst;ptree
st )(y)

(S14)

where fBinomial is the density of the Binomial distribution.

S2.3 Re�ned sampling

In the re�ned sampling,Gst twigs (i.e. groups of spatially connected leaves) are sampled in sites

at timet. Here, the twig information (the number of twigs and the distribution of leaves on twigs)

are known but the suitabilityRg(t) of leaves in a twigg remains unobserved. The numbers of

pathogen lesionsNi(t) in the observed leavesi 2 f 1; : : : ;Mstgg of twig g givenRg(t) andu(t;xs) are

independent and Poisson distributed:

Ni(t) j u(t;xs);Rg(t) �
indep.

Poisson(u(t;xs)Rg(t)) (S15)
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Then, the numbers of infected leavesYleaf
stg (i.e. leaves with at least one pathogen lesion) givenRg(t)

andu(t;xs) are independent and distributed under the following Binomial distributions:

Yleaf
stg j u(t;xs);Rg(t) �

indep.
Binomial(Mstg;1� e� u(t;xs)Rg(t)) (S16)

In addition,

u(t;xs)Rg(t) j u(t;xs) �
indep.

Gamma(s � 2;u(t;xs)s 2) (S17)

Using Eqs. (S15)–(S17),Yleaf
stg givenu(t;xs) are independent and follow Gamma-Binomial mixture

distributions:

f ref
st (y) = P[Yleaf

stg = y j u(t;xs)]

=
Z ¥

0
fBinomial(Mstg;1� e� z)(y) fGamma(s � 2;u(t;xs)s 2)(z)dz

(S18)

where fGammais the density of the Gamma distribution. Note that this Gamma-Binomial mixture

distribution is an over-dispersed Binomial distribution like the Beta-Binomial distribution.
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S3 Estimation of the number of leaves ef�ciently observed dur-

ing tree scans

A problem inherent to the raw sampling design is that we do not know the number of leaves observed

during the scan of the trees, contrary to the twig data for which we counted both the number of

infected leaves and the total number of leaves carried by each observed twig. In other words, an

inspected tree is a set of leaves of unknown size.

We assumes in Eq. (S12) that the numberYleaf
stb of infected leaves among theM leaves observed

in treeb is approximately distributed under a Beta-Binomial distribution with meanMpleaf
st and tree

perception parameterg. Parameterg is however an unknown parameter. To overcome this parameter

when calculating the average number of leaves observed per tree, we use the fact that on average

the number of infected leaves is the same with a binomial distribution:

Yleaf
stb j u(t;xs) � approx: Binomial(M; pleaf

st ) (S19)

From this distribution, we obtain at each sites and datet the probabilityptree
st that a tree is

infected as a function of both the probabilitypleaf
st that a leaf is infected and the numberM of leaves
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observed on a tree:

ptree
st = P(Yleaf

stb > 0 j u(t;xs))

= 1� P(Yleaf
stb = 0 j u(t;xs))

= 1� (1� pleaf
st )M

(S20)

Thus, the number of leaves on a tree satis�es:

M =
log(1� ptree

st )
log(1� pleaf

st )
(S21)

Let us use as approximations ofptree
st the observed proportionsqtree

st of infected trees at sitessand

datest, and as approximations ofpleaf
st the observed proportionsqleaf

st of infected leaves (calculated

from twig data). Then, an estimatel̂ M of the mean number of leavesl M by tree is given by:

l̂ M = round

 
1
N

N

å
i= 1

log(1� qtree
st )

log(1� qleaf
st )

!

(S22)

with N the number of pairs(s;t) (i.e. sampling sites and dates) displaying both tree and twig data.

Proportions of infectionqtree
st = 1 andqleaf

st = 1 where approximated to 1� 10� 16 for numerical

considerations. This procedure led tol̂ M = 10. This value may appear low. However,l M does not

correspond to the actual mean number of leaves carried by an entire young tree but amounts to the

mean number of leaves effectively inspected during tree scan,i.e. those observed as minutely as for

the twig data in a limited time (see Eq. (S13)). It is important to note that for each tree the tree

scan stops when an infected leaf is observed, or after 30 s of inspection. Therefore, the number of
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inspected leaves per tree can be very low in highly infected sites.

For the practical identi�ability studies, we setl M = 10. For parameter inference on the real data

set a different value of(l̂ M)t was estimated for each sampling date, from the observed proportions

qtree
st of infected trees and the observed proportionsqleaf

st of infected leaves at datet (Table S1).

Table S1: Estimated number of leaves effectively observed per tree for each sampling datet, (l̂ M)t .
The values of(l̂ M)t were used in the application on the real data set.

Date t (l̂ M)t

1 40
2 24
3 6
4 3
5 5
6 1
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S4 Simulation details

Computations were performed with theRsoftware environment (R Core Team, 2018). The vector

of initial population densitiesu(0;x) for x over [� R;R] was estimated from the data of the �rst

sampling date, by �tting a general model for analysis of dose-response data (packageDrc on R,

Ritz et al., 2015). This vector of initial population densities represented the initial condition of

all simulations. We modelledN = 1500 time steps andI = 400 points in space. Because of the

numerical scheme, with these parameters the reaction-diffusion dispersal model R.D. required an

upper limit for parameterl : we setl up = 23 for this model.

To �t our real case study, for all simulations we setR= 100 km, for a 200 km long river valley,

and the epidemic was monitored overT = 150 days. We considered a shift in the environment

topology atd = 0:31% of the valley, which corresponds to the delimitation observed in the Durance

River valley with the Serre-Ponçon dam at 62 km downstream of the starting point of the epidemic.

Therefore, for all simulations, the two growth ratesrup andrdw apply to continuous segments of

proportionsd and 1� d of the monitored space, respectively.

S4.1 Practical parameter identi�ability

Simulations were performed as follows in three steps.

Step 1: Simulation of a realistic epidemic. Given a hypothetical dispersal model (JExp, JGauss, JExpP

or R.D.), values in the parameter vectorq = ( qr ;qJ;g;s 2) are independently and randomly drawn

from dedicated distributions encompassing a large diversity of invading scenarios and speci�ed in

Table S1. We then simulate the corresponding epidemic along the 1D spatial domain[� R;R]. This

epidemic is considered `realistic' if a set of requirements on the observed proportion of infected
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treesPs;t on the farther downstream site (s= R) is met:

� PR;30 < 0:1 (the proportion of infected trees after one month is lower than 10%);

� PR;75 < 0:5 (the proportion of infected trees after two and a half months is lower than 50%);

� PR;150 > 0:1 (the proportion of infected trees after �ve months is higher than 10%);

� PR;150 < 0:8 (the proportion of infected trees after �ve months is lower than 80%).

Step 1 is complete once a candidate vectorq leads to an epidemic satisfying the four conditions

described above (i.e. the simulation ofq and the epidemic is repeated while the four conditions are

not satis�ed). Thereafter, the vector �nally retained in Step 1 is denotedqtrue.

Table S1: Marginal distributions used to randomly sample the model parameters included inq =
(qr ;qJ;g;s 2) before checking the requirements detailed in Step 1, withqr = ( rdw;w) andqJ = ( l )
or qJ = ( l ; t ) depending on the model.

Parameter Distribution Interval
rdw Log-Uniform [0.01, 0.5]
w Uniform [-2, 3

:
4]

l Log-Uniform [0.2,5]
t Log-Uniform [0.2,1]
g Log-Uniform [2,20]

s 2 Log-Uniform [0.01, 15]

Step 2: Simulation of the sampling process. We consider a sampling design similar to our real

experiment with six sampling dates and 12 sampling locations regularly spread over 150 days and

200 km, respectively (R= 100 km). As for our real data, we increase the location density for the

�fth date, with 45 locations instead of 12. For each date and location, the raw sampling consists in

simulating the observed sanitary status of 10 leaves per tree from 100 trees, and the re�ned sampling

consists in simulating the observed sanitary status of 25 spatially connected leaves from 20 twigs,
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the simulations being performed givenqtrue. The resulting data set is denotedD true.

Step 3: Parameter estimation. We use the dataD true to estimate the model parameters by minimiz-

ing the logarithm of the likelihood functionL(q). In our case, preliminary tests revealed that clas-

sical optimisation algorithms were not accurate enough to provide satisfactory rates of convergence

due to local optimum problems. Thus, we adopt a hybrid strategy combining �rst a Nelder-Mead

algorithm (improving global search ability) and then a Nlminb algorithm (for its high computational

ef�ciency). Speci�cally, we proceed in three substeps described below, the crucial stage consisting

in �nding initial values that give a satisfactory rate of convergence.

Step 3.1: Using Step 1, we generate 500 vectorsqinit . Note that this step was only performed once

for all the estimations performed in this article. We provide in Figure S1 a comparison of the initial

distribution of parameters as stated in Table S1, and of the distribution of parameters in the vector

qinit , i.e. leading to “realistic” epidemics.

Step 3.2: The corresponding 500 likelihood valuesL(qinit) are calculated givenD true. Then, the 20

vectorsqinit corresponding to the 20 largest likelihood values are used as initial values for 50 steps of

a NELDER-MEAD optimisation routine (Rfunctionoptim), resulting in 20 updated initial parameter

vectorsqinit2 depending onD true. The new initial vectorsqinit2 that do not satisfy lower boundsqlow

and upper boundsqup are excluded. We usedqlow = ( rdw = 0:001;w = � 7; l = 0:02; t = 0:02;g =

1:05;s 2 = 10� 7) andqup = ( rdw = 0:5;w = 3; l = 10; t = 1;g = 30;s 2 = 20)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
qup = ( rdw = 0:5;w = 4; l = 10; t = 1;g = 30;s 2 = 20),

with l = 23 in qup instead of 10 for the R.D. model. The validity intervals de�ned byqlow andqup

encompass the intervals used to simulateq (see Table S1). The likelihood values of theninit remain-
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ing vectorsL(qinit2) are calculated (givenD true) and ranked in descending order.

Step 3.3: q is then estimated using the NLMINB optimisation routine with lower and upper bounds

qlow andqup, respectively. The initial parameter values are set to the �rst vectorqinit2 as ordered in

the previous step. The estimated parameter values, sayqestim, are accepted if thenlminb function

in Rdelivered a successful convergence diagnostic (with tunning parametersrel.tol =5:10� 5 and

iter.max =3000). If not, the second vectorqinit2 is used, and so on until reaching convergence or

testing theninit initial vector's values selected at step 3.2. In the latter case, a convergence failure is

obtained. Overall, this algorithm allows to obtain high rates of convergence.

These three steps were reiterated until deriving the estimation ofn = 100
:::::::
n = 160

:
realistic epi-

demics for each dispersal model. Checking for practical identi�ability of parameters basically relies

on plotting for each dispersal model the cloud of points betweenqtrue andqestim(Figures S2, S3, S4,

S5) and computing the corresponding correlations. Among all simulations performed, the propor-

tions of convergence were0:91,0:95,0:93,and0:90
::::
0:98

:
for dispersalJExp, JGauss, JExpP, and R.D.

, respectively
:::
and

::::
up

::
to

:::::
0:99

::::
for

::::::
JExpP. A simulation converged when the convergence diagnostic

of the algorithm indicated a convergence, and when all parameters were estimated inside intervals

de�ned byqlow andqup. In the small number of simulations where the value ofl estim proposed by

the optimisation algorithm was higher than 23 (which is the upper limit of our numerical scheme,

Appendix S1), the simulation was still considered convergent withl estim= 23. This con�guration

can occur in particular when trying to �t dispersal R.D. on datasets simulated according toJExpP.
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Figure S1: Distributions of parameters, before (in dotted black) and after (in red) retaining only
parameters values leading to “realistic” epidemics. Dotted black distributions correspond to distri-
butions given by Table S1. Red line distributions correspond to the distribution of parameters in
qinit . We represent here the distribution of “realistic” epidemics from the four hypothetical dispersal
models (JExp, JGauss, JExpP and R.D.) for parametersrdw, w, g ands 2, for JExpP for parametert ,
and forJExp, JGaussandJExpP for parameterl .
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Figure S2: Practical parameter identifiability for the dispersal model JExp. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
graph regroups the results of 100

::::
160 replicates. Straight lines correspond to the first bisector.
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Figure S3: Practical parameter identifiability for the dispersal model JGauss. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
graph regroups the results of 100

::::
160 replicates. Straight lines correspond to the first bisector.

xviii



0.01 0.02 0.05 0.10

0.
01

0.
02

0.
05

0.
10

Parameter rdw

Correlation coeff: 0.9919 (0.00376)
True value

E
st

im
at

ed
 v

al
ue

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

4

Parameter ω

Correlation coeff: 0.99363 (0.00223)
True value

E
st

im
at

ed
 v

al
ue

0.2 0.5 1.0 2.0 5.0

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

Parameter λ

Correlation coeff: 0.98337 (0.00582)
True value

E
st

im
at

ed
 v

al
ue

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

Parameter τ

Correlation coeff: 0.92699 (0.01893)
True value

E
st

im
at

ed
 v

al
ue

2 5 10 20

2
5

10
20

Parameter γ

Correlation coeff: 0.96605 (0.00609)
True value

E
st

im
at

ed
 v

al
ue

0.01 0.05 0.50 5.00

5e
−

03
5e

−
02

5e
−

01
5e

+
00

Parameter σ2

Correlation coeff: 0.99686 (0.00094)
True value

E
st

im
at

ed
 v

al
ue

Figure S4: Practical parameter identifiability for the dispersal model JExpP. Each point represents
the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value). Each
graph regroups the results of 100

::::
160 replicates. Straight lines correspond to the first bisector.
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