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Abstract
A model of optimal control of ventilation has recently been developed for humans. This
model highlights the importance of the localization of the transition between a convective
and a diffusive transport of respiratory gas. This localization determines how ventilation
should be controlled in order to minimize its energetic cost at any metabolic regime. We
generalized this model to any mammal, based on the core morphometric characteristics
shared by all mammalian lungs and on their allometric scaling from the literature. Since
the main energetic costs of ventilation are related to convective transport, we prove that,
for all mammals, the localization of the shift from a convective transport to a diffusive
transport plays a critical role on keeping this cost low while fulfilling the lung function. Our
model predicts for the first time the localization of this transition in order to minimize
the energetic cost of ventilation, depending on mammal mass and metabolic regime.
From this optimal localization, we are able to predict allometric scaling laws for both tidal
volumes and breathing rates, at any metabolic rate. We ran our model for the three
common metabolic rates – basal, field and maximal – and showed that our predictions
reproduce accurately experimental data available in the literature. Our analysis supports
the hypothesis that mammals allometric scaling laws of tidal volumes and breathing rates
at a given metabolic rate are driven by a few core geometrical characteristics shared by
mammalian lungs and by the physical processes of respiratory gas transport.
Keywords: Allometry; Respiratory system; Gas transport; Metabolic rate; Lung morphometry

Introduction

In animals, cellular respiration refers to the aerobic oxidation of fatty acids and glucose that
represents a major source of energy production (Lodish et al., 2008). Oxidative processes
require oxygen to be brought from the atmosphere to each individual cell. In parallel, carbon
dioxide, a major by-product of cellular respiration, has to be removed from the tissues (Hsia
et al., 2016). Capture and transport of oxygen and removal of carbon dioxide is performed by
the respiratory and circulatory systems. The lung handles the transport of oxygen from the
ambient air to the alveolar exchange surface, which is in contactwith the bloodnetwork. Then,
the circulatory system transports oxygen from the lung exchange surface to cells. Conversely,
carbon dioxide is transported from cells to the ambient air (JB West, 2011).

The mammalian lung has been selected and shaped by evolution to fulfill the body needs
in oxygen and to eliminate carbon dioxide (Hsia et al., 2016). It is composed of twomain parts:
the bronchial tree and the respiratory zone.

The bronchial tree is structured as a nearly dichotomous tree, where an airflow circulates
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during the process of ventilation, which consists in a succession of inspiration and expiration
cycles. At inspiration, fresh air is brought into the respiratory zone, where oxygen exchange
with blood takes place. In parallel, carbon dioxide is transferred from blood to alveoli. Then,
at expiration, a higher carbon dioxide/lower oxygen air is expelled from the lung (JB West,
2011).

The respiratory zone forms a large and thin exchange surface between alveolar air and
blood. This surface is folded into the thorax cavity and connected to ambient air thanks to a
compact bronchial tree. These characteristics have evolved to fulfill the gas exchange require-
ments in mammals while satisfying the structural body needs, i.e. a compact and rib-covered
thorax cavity (Mauroy, Filoche, Weibel, et al., 2004).

The transport of air in the lung by ventilation requires energy. A hydrodynamic resistance
to the air flow in the bronchi arises from friction effects, due to air viscosity (Mauroy, 2014). In
parallel, mechanical energy is needed to expand the thoracic cage and the lung tissues during
inspiration. That energy is lost at expiration by the viscoelastic recoil of the tissues, at least at
rest (JBWest, 2011). Without a careful regulation, these physical constraints could have a high
metabolic cost, even at rest (Otis et al., 1950). However, natural selection favors configura-
tions that require low amounts or minima of energy. Moreover, the process of optimization
by evolution is performed under the constraint of the lung function: the gas exchanges have
to fit the metabolic activity requirements.

The typical functional constraint associated to this energy cost was up to recently based on
the total air flow rate entering the lung only (AT Johnson, 2007; Mead, 1960; Otis et al., 1950),
without accounting for the respiratory gas transport and the gas exchange requirements.
More recently, Noël andMauroy (2019) optimized the energy spent for ventilation in humans
with a more realistic functional constraint, based on the oxygen flow in the alveoli, including
the physics of oxygen and carbon dioxide transport in a symmetric branched model of lung.
This approach was not only able to predict physiological ventilation parameters for a wide
range of metabolic regimes, but it also highlighted the distribution and transport of oxygen
and carbon dioxide in the lung.

Actually, the progression of air in the lung is a combination of two mass transport pro-
cesses: convection and diffusion. In the upper and central part of the bronchial tree, the
convective transport largely dominates the mass transport, driven by the pressure gradient
imposed by the airflow. However, as the cumulative surface of the bronchi section area in-
creases at each bifurcation, the air velocity decreases while progressing towards the deeper
part of the tree. At some point, the characteristic velocity of convection becomes smaller
than the characteristic velocity of diffusion; the mass transport becomes dominated by the
diffusion process. The localization of the transition zone between convection and diffusion
depends on the geometry of the lung and on the ventilation parameters. The previous work
of Noël and Mauroy (2019) showed that the control of ventilation in humans localizes the
transition zone based on a trade-off between the oxygen demand and the availability and ac-
cessibility of the exchange surface deeper in the lung (Noël and Mauroy, 2019; Sapoval et al.,
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2002).
The lungs ofmammals sharemorphological and functional properties, raising the question

onwhether the previous results for human can or cannot be extended to all mammals. These
properties are known to depend on the massM of the animal, expressed in kg in this study,
with non trivial power laws called allometric scaling laws (Gunther, 1975; Hsia et al., 2016;
Huxley and Teissier, 1936; Peters, 1986; GB West et al., 1997). The physics of ventilation, and
hence its control, is linked to the lung geometry. Consequently, themorphological differences
amongst mammals also affect the control of ventilation. This is supported by the allometric
scaling laws followed by the ventilation frequency and tidal volume. Breathing rate at basal
metabolic rate (BMR) has been estimated to follow the law fBMR

b ' 0.58M−
1
4 Hz (Worthing-

ton et al., 1991) and tidal volume to follow the law V BMR
T ' 7.14 M1 mL (Haverkamp et al.,

2005; GB West et al., 1997). At other metabolic rates, less data is available in the literature
except for the breathing rate of mammals at maximal metabolic rate (MMR), estimated to fol-
low the law fMMR

b ' 5.08M−0.14 Hz (Altringham and Young, 1991). The links between these
allometric scaling laws and the optimization of the energy spent for ventilation by mammals
remains still to be uncovered. A model able to predict these laws for mammals would be a
powerful tool to derive them at other regimes, such as at submaximal exercise, at maximal
exercise or at field metabolic rate (FMR).

Actually, the ventilation properties at intermediate metabolic rates are difficult to obtain,
making the study of the metabolism of mammals at these regimes difficult to analyse (Speak-
man, 1998). Hence, a clear biophysical understanding of the origin of these scaling laws could
allow to extend ventilation-related analyses performed for one mammal species to another.
This could improve the pertinence of using animal models (Matute-Bello et al., 2008; Rocco
and Marini, 2020) or, to the contrary, of using human data, richer in the literature, to study
the metabolism of other mammals (Haverkamp et al., 2005).

In this work, we develop twomathematical models: one to estimate the amount of oxygen
captured from air by mammalian lungs; and one to estimate the energetic cost of ventilation.
These two models depend on mammals mass and are coupled together to form a mathe-
matical model for the natural selection of breathing rates and tidal volumes. In the frame of
our model hypotheses, we show that the physiological allometric scaling laws reported in the
literature for both breathing rates and tidal volumes are actually minimizing the mechanical
energy of breathing. Moreover, we show that the selected configurations at a givenmetabolic
rate are mainly driven by the geometries of the mammalian lungs and by the physical pro-
cesses involved in oxygen transport in the lung.

Modelling

The methodology and hypotheses used to perform our analysis are summarised in Tables 4,
5 and 6 in Appendix 1. The derivation of the allometric properties of ventilation is based on
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the previous model developed by Noël and Mauroy (2019), which is adapted to all mammals
over 5 orders of magnitude in mass.

Ventilation pattern and energy cost of ventilation

The cost of ventilation is estimated as in Noël andMauroy (2019) and its computation is based
on AT Johnson (2007), Mead (1960), andOtis et al. (1950). The estimation of the cost is general-
ized to all mammals using the allometric scaling laws of the mechanical parameters involved
in lung ventilation.

The velocity u of the air entering the lung is represented by a sinusoidal pattern in time,
i.e.

u(t) = U sin(2πt/T ) (1)
The quantityU is themaximal velocity and T is the period of ventilation and the inverse of the
breathing frequency fb = 1/T . Denoting S0 the surface area of the tracheal cross-section,
the tidal volume is then VT = US0T/π, see Appendix 2.1 and the air flow rate is V̇E = VT fb.

The biomechanics of the lung ventilation involves two active physical phenomena that are
the sources of an energy cost (AT Johnson, 2007; Noël and Mauroy, 2019). First, the motion
of the tissues out of their equilibrium implies that the diaphragm has to use, during inspira-
tion, an amount of energy that is stored in the tissues as elastic energy. This energy is then
used during expiration for a passive recoil of the tissues. The power spent is related to the
elastic properties of the thoracic cage and of the lung. These properties depend on the lung
complianceC (Agostini et al., 2011), which is defined as the ratio between the change in lung
volume and the change in pleural pressure. We derive the resulting power in Appendix 2.2.
Second, the airflow inside the bronchi induces an energy loss due to viscous effects that have
to be compensated by themotion of the diaphragmduring inspiration. The dissipated viscous
power depends on the hydrodynamic resistance R of the lung. Details about the derivation
of the resulting power are given in Appendix 2.3.

The total power P̃(VT , fb) spent by ventilation is the sum of these two powers
P̃(VT , fb) =

V 2
T fb
2C︸ ︷︷ ︸

elastic power
+

1

4
(πfbVT )

2
R︸ ︷︷ ︸

viscous power
(2)

The compliance and the hydrodynamic resistance of the lung follows allometric scaling laws
that have been derived at BMR: C ∝ M1 (Stahl, 1967) and R ∝ M−

3
4 (GB West et al., 1997).

Nevertheless, lung volumes at exercise tend to stay within the linear part of the pressure–
volume curve, suggesting that the compliance does not change much at exercise (Henke et
al., 1988). Also, the diameters of the airways adjust during exercise and maintain the lung
resistance close to its rest value (BD Johnson et al., 1992), see details in Appendix 8. Hence, in
ourmodel, both the compliance and the hydrodynamic resistance are assumed independent
of the metabolic regime. However, these hypotheses might not hold at very high exercise,
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where the power spent for ventilation is drastically increased due to non-linear responses.
Hence, the previous hypotheses might underestimate the mechanical power needed for ven-
tilation at intense exercise (Agostoni and Hyatt, 2011; Mauroy, Filoche, Andrade, et al., 2003).

The mechanical power has to be minimized with a constraint on the oxygen flow to blood
fO2(VT , fb), which has to match the oxygen flow demand V̇O2 . For a given mammal mass,
the mathematical formulation of this optimization problem is

Min
(VT ,fb)∈H

P̃(VT , fb)

withH =
{

(VT , fb) | fO2
(VT , fb) = V̇O2

} (3)

In the following, we estimate the oxygen flow fO2
(VT , fb) transferred to the blood during

the ventilation and the oxygen flow demand V̇O2
according to the metabolic regime. Due to

the complexity of the model, the optimization of the mechanical power is carried out numer-
ically. Our model predicts that the optimal tidal volume VT and breathing rate fb follow an
allometric scaling law.
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Variables Exponent PrefactorPredicted (GB West et al., 1997) Observed

Morphometry

VL: Lung volume 1 1.06 (Stahl, 1967) 53.5 mL (Stahl, 1967)
r0: Tracheal radius 3/8 (= 0.375) 0.39 (SM Tenney and Bartlett, 1967) 1.83 mm∗

l0: Tracheal length 1/4 (= 0.25) 0.27 (SM Tenney and Bartlett, 1967) 1.87 cm∗

rA: Radius of alveolar ducts 1/12 (' 0.083) 0.13 (SM Tenney and JB Tenney, 1970) 0.16 mm∗

lA: Length of alveolar ducts -1/24 (' -0.042) N.D. 1.6 mm∗

nA: Number of alveoli 3/4 (= 0.75) N.D. 12 400 000∗
vA: Volume of alveolus 1/4 (= 0.25) N.D. N.D.

Physics

fb : Respiratory frequency (rest) -1/4 (= -0.25) -0.26 (Stahl, 1967) 53.5 min−1 (Stahl, 1967)
VT : Tidal volume (rest) 1 1.041 (GB West et al., 1997) 7.69 mL (Stahl, 1967)
P50: O2 affinity of blood -1/12 (' -0.083) -0.089 (Dhindsa et al., 1971) 37.05 mmHg∗
R: Total resistance -3/4 (= -0.75) -0.70 (Stahl, 1967) 24.4 cmH2O s L−1 (Stahl, 1967)
C: Total compliance 1 1.04 (Stahl, 1967) 1.56 mL cmH2O−1 (Stahl, 1967)
Ppl: Interpleural pressure 0 0.004 (Günther and De la Barra, 1966) N.D.

Variables Exponent at BMR Exponent at FMR Exponent at MMR
Metabolism V̇O2

: O2 consumption rate 3/4 (= 0.75) (Kleiber, 1932; Peters, 1986) 0.64 (Hudson et al., 2013) 7/8 (= 0.875) (Weibel and Hoppeler, 2005)
tc: Transit time of blood in
pulmonary capillaries

1/4 (= 0.25) (Haverkamp
et al., 2005; GB West et
al., 1997)

1/4 (= 0.25) (hypothesized) 0.165 (Bishop and Spivey, 2013; Haverkamp et al., 2005)

Table 1. Predicted and observed/computed values of allometric exponents for the mammalian respiratory system. ∗: Prefactor computed
using human values (M = 70 kg) at rest and computed for masses expressed in kg. BMR: Basal Metabolic Rate, FMR: Field Metabolic Rate,
MMR: Maximal Metabolic Rate. N.D.: No data found.
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Core characteristics of the geometry of the mammalian lung

The lungs ofmammals share invariant characteristics (Weibel, 1984). First, the lung has a tree-
like structure with bifurcating branches. It decomposes into two parts: the bronchial tree or
conductive zone that transports, mainly by convection, the (de)oxygenated air up and down
the lung, and the acini or respiratory zone, where gas exchangeswith blood occur through the
alveolar–capillarymembrane. The bronchial tree can be considered as self-similar, as the size
of its branches is decreasing at each bifurcation with a ratio close to h =

(
1
2

) 1
3 (Karamaoun

et al., 2018; Mauroy, Filoche, Weibel, et al., 2004; Weibel, 1984). In the acini, the size of the
branches are almost invariant at bifurcations (Tawhai et al., 2004; Weibel, 1984). Thus, the
bronchial tree and the acini are modelled as airway trees with symmetric bifurcations (Mau-
roy, Filoche, Weibel, et al., 2004; Mauroy, Fausser, et al., 2011; Mauroy, Flaud, et al., 2015;
Noël and Mauroy, 2019), as shown in Figure 1. This model accounts for the lung branching
pattern and for the lengths and diameters of airways, but not for the airways spatial distri-
bution. Actually, the properties such as branching angles and orientations of the branching
planes are not relevant in the model of oxygen transport developed in this work. Moreover,
some mammals species have specific branching pattern (Maina and Gils, 2001; Metzger et
al., 2008; Raabe et al., 1976). However, we only retain in our model the core property of the
mammalian lungs: the tree-like structure.

A generation of the tree corresponds to the set of branches for which the path to the
root of the tree, which mimics the trachea, contains the same number of bifurcations. The
bronchial tree is modelled withG successive generations. The branches in the generationG
are connected to the acini. The acini are modelled with H generations (Weibel, 1984). The
total number of generations of the tree is thenN = G+H . Hence, if the radius and length
of the root of the tree are r0 and l0, the radius ri and length li of an airway in the generation
i is

ri =

 r0h
i i = 0...G− 1

rG−1 i = G...N − 1
li =

 l0h
i i = 0...G− 1

lG−1 i = G...N − 1
(4)

In the generation i, the airways surface area Si and the mean air velocities ui in the airways
are related to the generation index i and can be computed from the airways radii scaling laws,
see Appendix 2.4.

The derivation of a lung model that depends only on mammal mass requires to relate
explicitly the morphological parameters involved in our model with the animal mass. We
used the datasets fromGBWest et al. (1997). These authors derived for the cardiorespiratory
system many theoretical allometric scaling laws that are in good agreement with ecological
observations.

The morphological parameters used in our model are the trachea radius r0, the reduced
trachea length l0, the generations number G of the bronchial tree, the generations number
H of the acini and the amount ρs of exchange surface area per unit of surface area of the alve-
olar duct wall. Each of these quantities follows an allometric scaling law that can be derived
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Figure 1. Illustration of the lungmodel used in this work. Ourmodel is based on the assembly
of self-similar trees with symmetric bifurcations thatmimic the two functional zones. The tree
in beige mimics the bronchial tree, where oxygen is only transported along the branches.
The tree in blue mimics the acini, where oxygen is transported along the branches and also
captured in the alveoli that cover the walls of the branches. The model of oxygen transport
depends only on airways lengths and diameters but not on airways spatial distribution in the
lungs. Hence, branching angles and branching planes orientations are not accounted for in
this work.

from GB West et al. (1997):
• The radius r0 of the trachea scales as M 3

8 (GB West et al., 1997). The bronchi radii,
and consequently the dead volume, are affected by the ventilation regime (Dempsey
and Jacques, 2015; BD Johnson et al., 1992). The airways radii in our lung model are
computed from the tree root radius r0, see equation (4). Hence, the dependence on
metabolic rate of the dead volume is integrated into the prefactor of the tracheal radius
allometric scaling law, see Appendix 2.5.

• The allometric scaling law for the tracheal length l0 ∝ M
1
4 can be derived from GB

West et al. (1997), see Appendix 2.6.
• Based on the hypothesis that the radii of alveolar ducts are similar to the radii of aveoli
rA (Weibel, 1984) and based on the allometric scaling law rA ∝ M

1
12 (GB West et al.,

1997), we can deduce that 2G ∝M 7
8 and hence determineG, see Appendix 2.7. More-

over, fromHaefeli-Bleuer andWeibel (1988) and Rodriguez et al. (1987), we can assume
that the number of generations of alveolar ducts H in the acini is independent of the
mammal mass and equal to 6.
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• Then, relating the scalings of G and H to the allometric scaling law for the exchange
surface area SA ∝M 11

12 (GBWest et al., 1997), we deduce that the amount of exchange
surface area per unit of alveolar duct surface area ρs is independent of the mammal
mass, see Appendix 2.8.

Hence, the number of airway generations N = G + H predicted is about 13 for a 30 g
mouse and about 23 for a 70 kg human, in agreement with physiological data (Gomes and
Bates, 2002; Weibel, Cournand, et al., 1963).

Oxygen transport and exchange with blood

The oxygen transport and exchange model in the human lung from Noël and Mauroy (2019)
is extended to any mammal, based on its massM . The transport and exchange now occur
in the idealized lung that has been generalized in the previous section to fit any mammal.
The parameters of the transport and exchange model from Noël and Mauroy (2019) are also
adjusted using relevant allometric scaling laws from GB West et al. (1997).

The transport of oxygen in the lung is driven by three phenomena: convection by the air-
flow, diffusion and exchange with blood through the alveoli walls. The partial pressure of
oxygen averaged over the section of an airway is transported along the longitudinal axis x of
the airway. In the alveolar ducts, the oxygen exchange with blood occurs in parallel with the
oxygen transport. Hence, in each airway belonging to the generation i, the partial pressure
of oxygen follows the convection–diffusion–reaction equation derived in Noël and Mauroy
(2019) and in Appendix 3,
∂Pi
∂t
−D∂

2Pi
∂x2︸ ︷︷ ︸

diffusion
+ui(t)

∂Pi
∂x︸ ︷︷ ︸

convection
+βi (Pi − Pblood)︸ ︷︷ ︸

exchange with blood
= 0,

for x ∈ [0, li], (5)
where Pi is the mean oxygen partial pressure over the airway section, D is the oxygen dif-
fusion coefficient in air and ui(t) is the mean air velocity in an airway of generation i. The
reactive term βi mimics the exchanges with blood through the airway wall. The quantity βi is
equal to zero in the convective tree (i = 0...G− 1) and is positive in the acini (i = G...N − 1).
In the acini, the oxygen exchange occurs through the wall of the ducts and βi depends on the
membrane and oxygen chemical properties, on the membrane thickness and on the local
exchange surface derived from ρs, see Appendix 2.8. More details about the derivation of βi
are given in Appendix 3. As a consequence, the reaction term βi follows an allometric scaling
law, βi ∝M 1

12 , see Appendix 2.9.
To determine the oxygen partial pressure in blood that drives the oxygen exchange, we

assume that the flow of oxygen leaving an alveolar duct through its corresponding exchange
surface is equal to the flow of oxygen that is captured by blood, accounting for the oxygen
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Metabolic rate Allometric scaling law Reference
Basal (BMR) V̇ BMR

O2
∝M 3

4 (Kleiber, 1932; Peters, 1986)
Field (FMR) V̇ FMR

O2
∝M0.64 (Hudson et al., 2013)

Maximal (MMR) V̇ max
O2
∝M 7

8 (Weibel and Hoppeler, 2005)
Table 2. Allometric scaling laws for mammals of the needed oxygen flow V̇O2 at three
metabolic rates.M is the mammal mass. Data from the literature.

dissolved in the blood plasma and for the oxygen captured by haemoglobin (Felici, 2003; Noël
and Mauroy, 2019), see Appendix 4 for more details.

The bifurcations aremimicked using boundary conditions that connect a generation to the
next: we assume that the partial pressures are continuous at the bifurcations and that the
amount of oxygen that goes through the bifurcation is conserved, see Appendix 5.

Finally, the system is initialised at the time t = 0 s using a distribution of partial pressures
detailed in Appendix 6.

With these hypotheses, ourmodel takes as inputs themass of themammalM , the oxygen
flow needed by the body V̇O2 , the tidal volume VT and the breathing frequency fb. Themodel
outputs the flow of oxygen fO2

(VT , fb) exchanged with blood, see Appendix 2.10.

Power optimization with a constrained oxygen flow

We search for the minimum of P̃(VT , fb) relatively to the tidal volume VT and the breathing
frequency fb, see equation (2). Theminimization ismadewith a constraint on the oxygen flow
to blood, written mathematically fO2(VT , fb) = V̇O2 . The quantity fO2(VT , fb) is the oxygen
flow to blood resulting from a lung ventilation with the characteristics (VT , fb) and estimated
with our model of oxygen transport and exchange in the mammalian lung. The quantity V̇O2is the oxygen flow needed by the metabolism at the regime considered. Allometric scaling
laws for mammals of basal, field and maximal metabolic rates are available in the literature,
see Table 2. With these scalings, we can compute the desired oxygen flow V̇O2 dependingon the animal massM and on the metabolic regime. Other exponents for metabolic rates,
less pertinent for our study, have also been derived for specific subsets of mammals species,
based for example on their size or on their athletic capacity (Weibel, Bacigalupe, et al., 2004;
White and Seymour, 2003).

The resolution of the model equations and the optimization process are performed using
numerical simulations, as in Noël and Mauroy (2019). The numerical strategy is described in
Appendix 7 and details about the sensitivity of the model to its parameters are given in Ap-
pendix 8. The software and its details are available in the open data repository Zenodo (Noël,
Karamaoun, et al., 2021).
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Results

Our analysis assumes that mammals evolution selected for the minimum of the mechanical
cost of ventilation while allowing the lung to fulfill its functions of oxygen transfer to blood.

Our modelling approach mimics this process and allows to determine optimal values for
the breathing rate fb and the tidal volume VT from the massM of a mammal and from its
metabolic rate. The mechanical power of ventilation P̃(VT , fb), estimated in equation (2), is
optimized with a constraint on the oxygen flow. This functional constraint is expressed in
our model as fO2

(VT , fb) = V̇O2
. The oxygen flow fO2

(VT , fb) is computed using our model
of oxygen transport and exchange in an idealised lung, see Figure 1 and equations (5). The
quantity V̇O2 is the targeted oxygen flow and corresponds to the mean oxygen demand for
a mammal of massM at the metabolic regime studied. Basal, field and maximal metabolic
rates are analysed and the corresponding V̇O2

allometric scalings are determined from the
literature, see Table 2.

A synthesis of the hypotheses of our models is given in Appendix 1 in Tables 4, 5 and 6.

Allometric scaling laws of breathing rates and tidal volumes

In 1950, Otis et al. optimized P̃(VT , fb) with a constraint on the alveolar ventilation V̇A =

(VT−VD)fb, whereVD is the dead volume. They showed that an optimal breathing frequency
could be computed analytically (AT Johnson, 2007; Otis et al., 1950). Using data available in the
literature (Gunther, 1975; Haverkamp et al., 2005; Stahl, 1967; GB West et al., 1997) and the
analytic formula from Otis et al., we derived allometric scaling laws for breathing frequency
and tidal volume at BMR, fBMR

b,pred = 0.9M−
1
4 Hz and V BMR

T,pred = 7.5M1 ml, see Appendix 2.11.
The computed allometric scaling laws are in good agreement with observations, supporting
the minimal ventilation mechanical power hypothesis. However, this approach is not able to
predict allometric laws at regimes other thanBMR. Actually, the localization of the convection–
diffusion transition in the lung drives the amount of oxygen flow to blood (Noël and Mauroy,
2019). Hence, only a model that is able to localize this transition in the tree and to compute
precisely the amount of oxygen exchange would be able to reach satisfactory predictions.

We ran our model for the three metabolic regimes BMR, FMR and MMR. It predicts that
breathing rates and tidal volumes follow allometric scaling laws in all the three regimes, see
Figure 2,

fBMR
b ' 0.61 M−0.27 Hz, V BMR

T ' 6.1 M1.04 ml
fFMR
b ' 1.17 M−0.31 Hz, V FMR

T ' 11.8 M0.97 ml
fMMR
b ' 1.37 M−0.17 Hz, V MMR

T ' 29.7 M1.01 ml
(6)

Our model predicts exponents that are in accordance with the values observed in the liter-
ature, see Table 3. Moreover, the predicted prefactors show that our model is able to give
quantitative predictions in accordance with the physiology of the mammalian lungs.
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A

B
Figure 2. A: Predicted tidal volume as a function of the mammal mass (log-log). Solid line:
BMR, V BMR

T ' 6.1 M1.04 ml; dashed line: FMR, V FMR
T ' 11.8 M0.97 ml, dash-dotted

line: MMR, V MMR
T ' 29.7 M1.01 ml. B: Predicted breathing frequency as a function of

the mammal mass (log-log). Solid line: BMR, fBMR
b ' 0.61 M−0.27 Hz; dashed line: FMR,

fFMR
b ' 1.17 M−0.31 Hz, dash-dotted line: MMR, fMMR

b ' 1.37 M−0.17 Hz. A larger dead
volume at exercise (Haverkamp et al., 2005) makes the oxygen source for diffusion slower
to deplete. This might lead to a decrease in the optimal breathing rate, depending on the
increase of the oxygen need. As a consequence, for small mammals, our model predicts
breathing frequencies at MMR smaller than breathing frequencies at FMR.
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fb (pred.) fb (obs.) VT (pred.) VT (obs.)
BMR −0.27 −0.25 1.04 1

FMR −0.31 N.D. 0.97 N.D.
MMR −0.17 −0.14 1.01 N.D.

Table 3. Predicted and observed exponents for the allometric scaling laws of breathing fre-
quency fb and tidal volume VT at three different metabolic regimes (Altringham and Young,
1991; Haverkamp et al., 2005; GB West et al., 1997; Worthington et al., 1991), see equations
(6).

Transition between convection and diffusion

The localization of the transition between convective and diffusive transport can be estimated
with the Péclet number (Noël and Mauroy, 2019). This number measures the relative influ-
ence of the transport of oxygen by convection on the transport by diffusion. In our model,
the localization of the transition zone corresponds to the generation k, where the Péclet num-
ber, denoted Pek , becomes smaller than one, see Appendix 2.12. The generation index k at
which the transition occurs depends on the mammal massM and on the air flow rate V̇E in
the mammal lung, see Appendix 2.13,

2k ∝

 V̇
3
2

E ×M−
3
4 if k < G

V̇E ×M−
5
24 if k > G

(7)

At BMR, our model predicts that the convection–diffusion transition occurs in the convective
tree for mammals with a mass larger than about 150 kg and in the acini for the others. The
corresponding generation index kBMR follows the law 2kBMR ∝M0.405 if the mammal mass
is larger than about 150 kg, and 2kBMR ∝M0.56 otherwise. At MMR, the convection–diffusion
transition always occurs in the acini at the generation index kMMR, which follows the scaling
2kMMR ∝ M0.63. Hence, in each lung compartment, the location of the transition depends
linearly on the logarithm of the animal mass, see Figure 3 and Appendix 2.14.

At exercise, the transition occurs deeper in the lung than at rest. Mammals with a low
mass have a transition that is localized relatively deep in their lung, as shown in Figure 3.
In the acini, oxygen is simultaneously displaced along alveolar ducts and captured by the
blood that flows in the alveoli walls. Consequently, the first alveolar ducts get higher oxygen
concentration than those deeper in the acini. This phenomenon is known as the screening
effect (Sapoval et al., 2002) and results in an exchange surface that can be only partially active,
depending on the localization in the lung of the transition between convection and diffusion.
Our model predicts that small mammals are using almost all the volume of their lungs at
rest, with low screening effect. To the contrary, large mammals present a clear difference in
term of volume usage between rest and exercise, with a transition localized near the end of
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Figure 3. Localization of the transition between convective and diffusive transport of oxygen
in the lung as a function of animal mass (logarithmic scale). The lines correspond to the local-
izations of that transition at BMR (rest, blue line) and MMR (V̇ max

O2
, orange line). The vertical

green line corresponds to human mass (70 kg). The lower beige region corresponds to the
convective zone of the lung and the upper blue region corresponds to the exchange surface
(acini). Small mammals tend to transport oxygen mainly by convection. Hence, there is no
screening effect (Sapoval et al., 2002) affecting their exchange surface. Their oxygen pres-
sure gradients between alveoli and blood are maximal everywhere, making their pulmonary
system very efficient. To the contrary, due to the screening effect, large mammals use only a
small portion of their exchange surface at rest. Hence, largemammals have a large reserve of
exchange surface available for higher metabolic rates. Increasing the ventilation amplitude
decreases the screening effect. Hence, the pulmonary system of large mammals is more ef-
ficient at exercise than at rest.

the bronchial tree at rest, implying a strong screening effect, and with a transition localized
deeper in the acini at exercise, implying a lower screening effect.

Exhaled oxygen fraction

The oxygen flow captured by the lung is a proportion of the air flow inhaled, V̇O2
= V̇E (fI −

fE) with V̇E = VT fb the air flow rate, fI the oxygen fraction in ambient air and fE the mean
exhaled oxygen fraction. The allometric laws predicted by our model for tidal volumes and
breathing rates allow to derive similar laws for the drop in oxygen fraction between ambient
and exhaled air, ∆f = fI − fE : ∆fBMR = 4.61 M0.002 %, ∆fFMR = 5.02 M−0.009 % and
∆fMMR = 5.12 M0.0005 %. The drop in oxygen fraction depends only slightly on mammal
mass and is in the range 3 to 5%, whatever the ventilation regime. With an inhaled oxygen
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fraction in air of about 21%, the oxygen fraction in the exhaled air is ranging from 16 to 18%,
in full accordance with physiology (Weibel, 1984). The quantity η = ∆f/fI can be considered
as ameasure for the efficiency of oxygen extraction by the lung. Our model suggests that the
system extraction is optimal for values of η of about 20%. Differences in η exists between
small and large mammals because of the non zero exponents in the allometric scaling laws
of ∆f . However, the values of these exponents are small and cannot be interpreted as such.
They might be the results of the simplifications made in the model and/or of the numerical
approximations.

Discussion

From a set of core morphometric parameters that represent the lung geometry, our model
allows to predict, at any metabolic regime, a set of dynamical parameters that represent the
lung ventilation and that minimize an estimation of the mechanical cost of ventilation. This
approach is able to predict with good accuracy the allometric scaling laws of mammals tidal
volumes and breathing frequencies reported in the literature (tidal volume at rest, breathing
frequencies at rest and V̇ max

O2
(Altringham and Young, 1991; Stahl, 1967; GB West et al., 1997;

Worthington et al., 1991; Young et al., 1992)). The validation of ourmodel at bothminimal and
maximalmetabolic regimes suggests that its predictions should be valid whatever the regime,
in the limit of the availability of the input parameters. This indicates that the mechanical
energy spent for ventilation might have driven the selection by evolution of the ventilation
patterns.

The optimization process was constrained, because the lung has to fulfill the function of
transporting the needed respiratory gas to and from blood. Although our model mimics only
the function of transporting oxygen, it is nevertheless able to reach valid predictions. This
raises the question about the influence of other respiratory gases, and more specifically, of
carbon dioxide. To answer this question, we adapted our model to account for a constraint
on the carbon dioxide flow, based on Noël and Mauroy (2019). At rest, the new predictions
were similar to that of a constrained oxygen flow. At exercise, we observed a shift between
the two cases, with the constraint on oxygen flow leading to better predictions. This suggests
that the oxygen flow could have driven the selection of breathing rates and tidal volumes in
mammals. This result might seem counterintuitive at first, as oxygen flow is suspected to
have a low influence on the control of ventilation at intraspecific level (Robertshaw, 2006).
However, since the input of our model is the characteristic mass of a mammal species, our
model is an interspecific model. As highlighted in the literature (Witting, 1997), interspecific
and intraspecific trends can be very different. Finally, it is important to notice that, apart from
the respiratory gas flows, other quantities, not accounted for in our model, are known to af-
fect the control of ventilation such as mechanical, chemical or thermic regulations (Dempsey
and Jacques, 2015; Sobac et al., 2019; Speakman and Król, 2010), at least at intraspecific level.
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The function of respiratory gas transport is dependent on the physical processes on which
these transports rely. Except for small mammals, themost crucial physical phenomena is the
screening effect (Sapoval et al., 2002). Screening effect affects how the exchange surface is
effectively used and drives at which depth in the lung the convection has to bring oxygen so
that diffusion could take over the transport. The lungmain response to a change inmetabolic
regime is to adjust the amount of exchange surface actually used. Hence, only an analysis
including a reliable representation of mammal lung and of respiratory gas transport is able
to reach predictions compatible with physiology whatever the regime.

The idealized representation of the bronchial tree and of the exchange surface used in this
study accounts for five core characteristics common to all themammalian lungs, as identified
in the literature (Mauroy, Filoche, Weibel, et al., 2004; Noël andMauroy, 2019; Otis et al., 1950;
Weibel, 1984; GB West et al., 1997): a bifurcating tree structure; an homogeneous decrease
of the size of bronchi at bifurcations; the trachea size; the alveoli size; and the surface area of
the exchange surface. At a givenmetabolic rate, these characteristics aremajor determinants
of the optimal tidal volume and breathing frequency that minimize the energetic cost of ven-
tilation. This indicates that once the metabolic regime is fixed, the morphology of the lung is
probably a core driver of the physiological control of ventilation. We tested this hypothesis by
altering in our analysis the allometric scaling laws related to the lung geometry. We observed
corresponding alteration of the predicted laws for tidal volumes and breathing frequencies.
Since morphology itself has probably been selected by evolution in order to minimize the hy-
drodynamic resistance in a constrained volume (Dubois de La Sablonière et al., 2011; Mauroy,
Filoche, Weibel, et al., 2004), morphology and ventilation patterns are intertwined together
in order for the lung to function with a low global energetic cost, i.e. a low hydrodynamic
resistance R and a low ventilation cost P̃(VT , fb), which also depends on R. Actually, this
suggests that coevolution of these traits might have occurred in order to keep the cost of
breathing as low as possible. Our representation of the lung does not account for interspe-
cific differences known to exist between the lungs of mammals, such as different degrees of
branching asymmetry, monopodial or bipodial lungs, etc. (Florens et al., 2011; Mauroy and
Bokov, 2010; Monteiro and Smith, 2014; Tawhai et al., 2004). Nevertheless, the predictions of
our model for the localization of the convection–diffusion transition in idealized lungs lead to
good estimations of the allometric scaling laws for tidal volumes and breathing frequencies,
indicating that themorphological parameters included in ourmodelmight primarily drive the
control of ventilation.

The generation index of the convection–diffusion transition, shown in Figure 3, depends
linearly on the logarithm of the mammal mass. Since the structure of the tree is also gov-
erned by allometric scaling laws, the generation index at which the transition between the
bronchial tree and the acini occurs also depends linearly on the logarithm of the mammal
mass. However, the slopes are different and the convection–diffusion transition is located in
the acini for small mammals and deep in the bronchial tree for largemammals. The reason is
that larger mammals actually need less oxygen relatively to their mass than small mammals
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as V̇O2
/M ∝M−1/4 at rest and V̇ max

O2
/M ∝M−1/8 at V̇ max

O2
. Hence, at rest, small mammals

use almost their entire exchange surface. They are subject to a low screening effect, making
their lung non limitant, since it is able to respond efficiently to a change inmetabolism. To the
contrary, large mammals tend to use only a small portion of that surface at rest and are sub-
ject to a strong screening effect. Actually, the screened exchange surface in large mammals
can be seen as an exchange surface reserve, which can be recruited to allow highermetabolic
rates. Interestingly, for masses near that of a human, the convection–diffusion transition at
rest occurs near the bronchial tree–acini transition (Karamaoun et al., 2018; Noël andMauroy,
2019; Sapoval et al., 2002).

The ability to increase the metabolic rate plays a crucial role in animal life, for example
for foraging or for responding to environmental threat. Our model suggests that the propor-
tion of oxygen extracted from ambient air by the lung, found to be about 20%, depends only
slightly on metabolic rate. More oxygen can be extracted at higher metabolic rates because
the volumes of inhaled air are larger. Except for small mammals, a larger volume of inhaled
air allows to use a larger portion of exchange surface, hence reducing de facto the screening
effect and accelerating the exchanges speed. As a consequence, air has to be renewed at a
quicker pace and the breathing rate is increased. This last effect is however counterbalanced
by the increase of dead volume with the intensity of exercise (Dempsey and Jacques, 2015).
However, the increase of dead volumewithmetabolic rate does not compensate the increase
of tidal volume. Typically our model predicts that, in humans, the ratio between these two
volumes drops from about 40% at BMR down to about 20% at MMR, in good agreement with
the literature (Haverkamp et al., 2005). Nevertheless, larger dead volumes allow to bring a
larger oxygen reserve at the convection–diffusion transition point. Hence, relatively lower air
renewing rates are needed. The optimization of the mechanical energy reflects a balance
between larger air volume and air renewal rate. A proper balancing allows to maintain an
efficient oxygen diffusion gradient in the acini. Our model suggests that this effect plays an
important role in the control of breathing rates in small mammals. It predicts that small mam-
mals should exhibit a breathing rate at MMR that is smaller than at FMR, as shown in Figure
2. Also, as small mammals exhibit almost no screening effect, the oxygen gradients between
alveoli and blood are maximal everywhere in the acini and their lung is very efficient, what-
ever the regime (Fregosi and Dempsey, 1984). This efficiency induces an optimal response
of the lung to changes in the circulatory parameters and no reserve of exchange surface is
needed. This brings up the hypothesis that the reserve of exchange surface may compen-
sate the screening effect occurring in the lungs of large mammals. More specific studies and
detailed analyzes of the respiratory system are however needed to confirm or infirm these
predictions, in particular studies involving a more realistic coupling with the circulatory sys-
tem.

Finally, there exists exceptions for which the oxygen demand can exceed the transport
capacity of the lung at maximal exercise, such as in human highly trained endurance ath-
letes or in thoroughbred horses (Dempsey, La Gerche, et al., 2020; Powers, 2020). For these
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exceptions, the response of the control of ventilation induces increased airways resistances
and flow limitations. As a consequence, the energy cost of ventilation becomes excessive for
the metabolism. Our model could be used to study these configurations and to highlight the
biophysical processes of these limitations.

Conclusion

Our results highlight the influence of the transport of respiratory gas on the control of ven-
tilation, and more generally, on the behavior of the lung and of the respiratory system. Our
results contribute to improve our understanding of the allometric scaling of ventilation in
mammals. They represent a new theoretical framework that highlights the evolution of the
respiratory system and its links with the organism metabolism. Our work suggests that the
dynamical characteristics related to the control of ventilation are highly dependent on the
morphological characteristics of the lung. This dependence comes from the physical pro-
cesses involved in oxygen transport. Moreover, it has been suggested that several core mor-
phological parameters related to the bronchial tree minimize the hydrodynamic resistance
of the lung in a limited volume, so that the exchange surface can fill most of the thoracic
space (Dubois de La Sablonière et al., 2011; Mauroy, Filoche, Weibel, et al., 2004). Conse-
quently, the control of ventilation is, at least partially, a direct consequence of the repartition
of lung space between the bronchial tree and the acini. More generally, this highlights the
importance of the geometrical constraints in the selection of organs characteristics, not only
in terms of morphology, but also in terms of dynamics.

Supplementary material

Script and codes are available online (Noël, Karamaoun, et al., 2021): doi:10.5281/zenodo.5112934
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Appendix

1 Strategy and model hypotheses

Table 4 indicates the methodology used in our analysis. Tables 5 and 6 on the next pages
describe the hypotheses of the two models coupled in our work.
Biological hypotheses (AT Johnson, 2007; Mead, 1960; Noël and Mauroy, 2019; Otis et al., 1950)

Evolutive hypothesis We assume that, in mammals, the ventilation parameters minimize the mechanical power
of the ventilation.

Physiological constraint We focus on the oxygen transport function of the lung and assume that the oxygen flow to
the blood has to fit the metabolic regime.

Ventilation parameters We characterize the ventilation with the breathing frequency fb and the tidal volume VT

Strategy

Our analysis is based
on
two input parame-
ters

• the mammal massM
• the metabolic need in term of oxygen flow V̇O2

, see Table 2.

Oxygen flows at typical
metabolic rates

The amount of oxygen flow needed by the metabolism follows allometric scaling laws that
depend on the regime considered.

• Basal Metabolic Rate (BMR): V̇ BMR
O2

∝M
3
4 (Kleiber, 1932; Peters, 1986)

• Field Metabolic Rate (FMR): V̇ FMR
O2

∝M0.64 (Hudson et al., 2013)
• Maximal Metabolic Rate (MMR): V̇ max

O2
∝M

7
8 (Weibel and Hoppeler, 2005)

Two mathematical
models are used
to compute estima-
tions of physiological
quantities

See details in Tables 5 and 6, the models inputs areM , V̇O2
and the ventilation parameters

fb andVT

• the model 1 estimates the mechanical power to perform the lung ventilation
P̃v(VT, fb)

• the model 2 estimates the oxygen flow from lung to blood fO2
(VT, fb)

The two models are
used for a constrained
optimization process

We search for the ventilation parametersVT and fb that minimize the mechanical power
P̃v(VT, fb) with the constraint fO2

(VT, fb) = V̇O2
on the oxygen flow.

Table 4. General strategy and hypotheses.
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Model 1: Power spent for lung ventilation, adapted from AT Johnson (2007), Mead (1960), Noël and Mauroy (2019), and Otis et al. (1950)
The mechanical power spent by lung ventilation has two main sources:

the air viscous dissipation in airways and the elastic power stored in thorax tissues
Model inputs: Mammal massM , tidal volume VT and breathing rate fb
Model output: Mechanical power spent by ventilation P̃v(VT , fb)

Viscous dissipation Air viscous dissipation in airways is estimated based on the hydrodynamic resistance of the
lung,R ∝M− 3

4 , see Table 1, Appendix 2.3 and (Stahl, 1967).
Elastic power Elastic properties of thorax and lung are estimated based on the lung compliance, C ∝M1,

see table 1, Appendix 2.2 and (Stahl, 1967).
Table 5. Hypotheses of the model 1 that estimates the power spent for ventilating the lung.

Peer Community In Mathematical and Computational Biology 26 of 37



Model 2: Oxygen transport in the lung, adapted from Noël and Mauroy (2019)
Oxygen is transported in airways by convection with air and by diffusion.
In acini, oxygen is also exchanged with blood through the airways wall.

Model inputs: Mammal massM , tidal volume VT and breathing rate fb
Model output: Oxygen flow to blood fO2 (VT , fb)

Lung geometry

The topology of the geometrical model for the mammal lung is based on the literature (Mau-
roy, Filoche, Weibel, et al., 2004; Weibel, 1984).

• The lung is modeled as a bifurcating tree, where each airway is a cylinder.
• The tree consists in two regions, a conducting zone and a respiratory zone.
• The geometry of bifurcations are neglected.

The tree is scaled using scaling laws for mammals from the literature.
• The root of the tree has a radius r0 ∝ M

3
8 (GB West et al., 1997) and a length

l0 ∝M
1
4 , see Appendix 2.6, the prefactor of r0 accounts for the dependence of dead

volume on metabolic regime, see Appendix 2.5 and (Dempsey and Jacques, 2015; BD
Johnson et al., 1992).

• The size of the airways decreases at each bifurcation with a constant ratio h =
(
1
2

) 1
3

in the conducting zone (Mauroy, Filoche, Weibel, et al., 2004; GB West et al., 1997) and
remains the same in the respiratory zone, see Figure 1.

• The conductive zone ends at the generation index G when the radius of the smallest
conductive airway reaches that of the alveoli radius, rA ∝M

1
12 , see Appendix 2.7.

• The number of generations H in the respiratory zone is assumed independent on
animal mass and equal to 6 (Haefeli-Bleuer and Weibel, 1988; Rodriguez et al., 1987).

• The amount ρS of exchange surface area per unit of wall surface area of airway in the
respiratory zone is determined based on the allometric scaling law of the exchange
surface SA ∝M

11
12 , see Appendix 2.8 and GB West et al. (1997).

Air fluid dynamics Our model uses the mean air velocity in airways and accounts for the air flow conservation
at each bifurcation (Mauroy, Filoche, Weibel, et al., 2004; Noël and Mauroy, 2019).

Oxygen transport Oxygen transport occurs by convection with air and by diffusion, see Appendix 3 (Noël and
Mauroy, 2019)

Oxygen exchange
with blood

As in Noël and Mauroy (2019), the physics of the oxygen exchange between alveolar air and
blood is based on a diffusion process through a membrane.

• The physical properties of the alveolar–capillary membrane is assumed to be equiva-
lent to that of a water membrane.

• The thickness of the alveolar–capillary membrane τ is assumed independent of mass,
τ ' 1 µm (Sapoval et al., 2002).

• The flow of oxygen through the membrane is assumed equal to the flow of oxygen
stored by the blood flowing in the capillaries (Felici, 2003; Noël and Mauroy, 2019), see
Appendix 4.

• The blood flow follows an allometric scaling law based on the transit time of blood in
capillaries, see Appendix 4.

Table 6. Hypotheses of the model 2 that simulates the transport of oxygen in the lung.
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2 Details of the model computations

2.1 Tidal volume

Tidal volume is computed as the integral of the air flow u(t)S0 over a half ventilation cycle,
with u(t) the sine function defined in equation (1),

VT =

∫ T
2

0

S0u(t)dt =
US0T

π

As fb = 1/T , the parameterization is equivalent for (U, T ) and (VT , fb).

2.2 Power associated to the compliance of the lung

The lung compliance is estimated by the ratio between the shift V in lung volume from func-
tional residual capacity (FRC) and the corresponding shift in pleural pressure ppl. The elas-
tic energy stored is then Ee = 1

2pplV = 1
2
V 2

C . Finally, the instantaneous elastic power is
dE
dt = 1

CV (t)dVdt with V (t) =
∫ t
0
S0u(ξ)dξ. We recall that u(t) is a sine function, see equation

(1). Assuming that the elastic power is stored during inspiration only, its averaged value over
a ventilation cycle is

Pe(U, T ) =
1

T

∫ T
2

0

1

C
V (t)

dV

dt
(t)dt =

1

C

U2S2
0T

2π2

Using the variables fb and VT leads to P̃e(VT , fb) =
V 2
T fb
2C .

2.3 Power associated to the hydrodynamic resistance of the lung

The hydrodynamic resistance of the airway treeR is the ratio between the air pressure drop
∆p applied between the root and the leaves of the tree and the resulting total air flow going
through that treeΦ. The instantaneous power relative to the viscous dissipation in the airway
tree is then ∆p Φ = RΦ2. In our model, Φ(t) = u(t)S0 with u(t) the sine function defined in
equation (1). Finally, we average the instantaneous power over a ventilation cycle assuming
that the power is spent only during inspiration,

Pv(U, T ) =
1

T

∫ T
2

0

R(u(t)S0)2dt = R
U2S2

0

4

Using the variables fb and VT leads to P̃v(VT , fb) = (πVT fb)
2R/4.

2.4 Airway surface area and velocity versus generation index

The cross-section surface area of a branch in the generation i is Si = πr2i . In the model of
the bronchial tree (i = 0...G− 1), Si = h2iS0, while in the model of the acini (i = G...N − 1),
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Si = SG−1. Air is assumed incompressible in the lung under normal ventilation conditions
(Elad et al., 1989), except perhaps during cough (MacKlem, 1974). This hypothesis is justified
by the value of the airMach numberMa in the lung. This number is computedwithMa = U/c,
whereU is themaximal velocity in airways –reached in the trachea–, and c the speed of sound
in air. The speed of sound in air is c =

√
1.4P/ρwith ρ ' 1.2 kg.m−3 the density of air and P

the absolute pressure in the lung that can be considered in the range 1000±100 cmH2Oat the
different regimes studied in this work. Hence, for air velocitiesU below 100m.s−1 (or air flow
in the lung below 25 L/s), the Mach number remains below 0.3, which is a typical threshold
under which compressible effects can be neglected (Anderson Jr, 2010). Consequently, flow
conservation leads to

ui(t) =

 u(t)
(

1
2h2

)i for i = 0...G− 1

uG−1(t)
(
1
2

)i−G+1 for i = G...N − 1

2.5 Tracheal radius

From (GBWest et al., 1997), the tracheal radius scales as r0 = aM
3
8 . The prefactor a depends

onmetabolic rate and is determined based on human data and dead volumes: a = 1.83 10−3

m.kg− 3
8 at BMR, a = 1.93 10−3 m.kg− 3

8 at FMR and a = 2.34 10−3 m.kg− 3
8 at MMR.

2.6 Tracheal length allometric scaling law

In our model, dead volume is proportional to tracheal volume and Vdead ∝ M1 (SM Tenney
and Bartlett, 1967). Then, Vdead ∝ πr20l0 ∝M1 leads to l0 ∝M 1

4 .

2.7 Conductive airway generations

The computation of G is based on the hypothesis that the radius of the alveolar ducts are
similar to the radius rA of the alveoli (Weibel, 1984), for which an allometric scaling law is
known, rA ∝M 1

12 (GBWest et al., 1997). Then, the number of generationsG of the bronchial
tree is obtained from rA = rG−1 = r0h

G−1, and the number of terminal bronchioles follows
2G−1 ∝M 7

8

This last allometric scaling law can be rewritten in the form
G =

[
log(rA/r0)

log(h)

]
+ 1 =

[
7

8

log(M)

log(2)
+ cst

]
+ 1

2.8 Total gas exchange surface of the lung

The total gas exchange surface of the lung SA ∝ M
11
12 (GB West et al., 1997) is distributed

over the alveolar ducts walls. In our model, a single alveolar duct has a lateral surface sad =
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2πrAlA with lA = l0h
G−1 ∝M− 1

24 , hence sad ∝M 1
24 . The total surface of alveolar ducts in

the idealized lung is then

Sad = 2G
H−1∑
k=0

2ksad = 2G(2H − 1)sad ∝M
11
12

Hence, the amount of exchange surface area per unit of alveolar duct surface area, ρs =

SA/Sad is such that the product ρs(2H − 1) ∝ M0 is independent of the animal mass.
The number of generations of alveolar ducts in an acinus is considered independent of the
mass (Haefeli-Bleuer andWeibel, 1988; Rodriguez et al., 1987). Consequently, in ourmodel ρs
is also independent of the mass. Under these conditions, our model respects the allometric
scaling law from the literature SA ∝M 11

12 .

2.9 Flow rateof oxygenpartial pressureperunit lengthof alveolar ducts

The thickness of the alveolar–capillarymembrane τ is assumed independent of themass, τ '
1 µm (Sapoval et al., 2002). The diffusivityDO2,H2O of oxygen in tissues can be approximated
by its value in water (Sapoval et al., 2002). The flow rate of oxygen partial pressure per unit
length of an alveolar duct is then

βi (Pi − Pblood) = ρs
2πrA
πr2A

κσO2,H2O
DO2,H2O

τ
(Pi − Pblood)

= ρs
2κ

rA
α (Pi − Pblood)

where κ is the ratio relating partial pressure of the gas to its concentration in water, σO2,H2Ois the solubility coefficient of the gas in water andDO2,H2O is the diffusion coefficient of the
gas in water. The permeability of the alveolar membrane α is α = σO2,H2O

DO2,H2O

τ .

2.10 Total flow of oxygen exchanged with the blood fO2(VT , fb)

The estimation of the total flow of oxygen exchanged with blood fO2
(VT , fb) is computed

from an established ventilation cycle,

fO2
(VT , fb) =

2πrAαρs
T

N−1∑
i=G

2i
∫ tC+T

tC

∫ li

0

(Pi(t, x)− Pblood(t, x)) dx dt (8)

with tC a time at which the system has reached a periodic regime and T = 1/fb.
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2.11 Otis et al. optimal breathing frequency at rest

The optimal breathing frequency computed by Otis et al. was obtained by canceling the
derivative of the power relatively to fb (AT Johnson, 2007; Otis et al., 1950),

fb,pred =
2V̇A/VD

1 +
√

1 + 4π2RCV̇A/VD

. (9)

At BMR, the allometric scaling laws of all the physiological quantities involved in this expres-
sion for fb are available in the literature: V̇A ∝M

3
4 (Gunther, 1975), VD ∝M1 (Stahl, 1967),

R ∝ M−
3
4 (Stahl, 1967; GB West et al., 1997) and C ∝ M1 (Stahl, 1967). Hence, we are able

to derive an allometric scaling law for breathing rate at BMR, fBMR
b , based on ventilation data

in healthy young humans (Haverkamp et al., 2005),
fBMR
b,pred = 0.9 M−

1
4 Hz

Based on breathing frequency and on ventilation data from Haverkamp et al. (2005), we can
deduce the allometric scaling law for tidal volumes at BMR, V BMR

T = V̇A/f
BMR
b + VD. Since

V̇A/f
BMR
b ∝M 3

4 /M−
1
4 and VD ∝M1, we have

V BMR
T,pred = 7.5 M1 ml

2.12 Péclet number

The Péclet number is computed by rewriting the transport equations (5) in a dimensionless
form,

2l2i
DT

∂Pi
∂s
− ∂2Pi

∂ξ2
+
liui(sT/2)

D︸ ︷︷ ︸
Pei(s)

∂Pi
∂ξ

+
βil

2
i

D
(Pi − Pblood) = 0, for ξ ∈ [0, 1] (10)

The dimensionless time is s = 2t/T with T/2 the inspiration or expiration time and the
dimensionless space is ξ = x/li. We define Pei as the average of the time-dependent Péclet
number Pei(s) over a half breath cycle. Then, for i < G,

Pei =
2

T

∫ T/2

0

Pei(t)dt =
2VT fbl0
πr20D

(
1

2h

)i
and for i > G,

Pei =
2

T

∫ T/2

0

Pei(t)dt =
2VT fbl0
πr20D

(
1

2h

)G−1(
1

2

)i−G+1

.
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2.13 Generation k of the transition between convection and diffusion

The generation k at which the transition between convection and diffusion occurs is com-
puted by solving the equation Pek = 1. If k < G, we have,

2k =

(
2VT l0fb
πr20D

) 3
2

=

(
2V̇E

l0
πr20D

) 3
2

∝ V̇
3
2

E ×M
− 3

4

and if k > G,
2k =

2VT l0fb
πr20D

(
2G−1

) 1
3

= 2V̇E
l0

πr20D

(
2G−1

) 1
3 ∝ V̇E ×M−

5
24

2.14 Localization of the transition from convective to diffusive trans-
port at BMR and MMR

At BMR, the generation index kBMR at which the transition between a transport by convection
and a transport by diffusion is localized depends on metabolic rate and on mammal mass,

kBMR =

∣∣∣∣∣∣ G− 1 + 3.41− 0.47 log(M)
log(2) (M > 154 kg)

G− 1 + 2.27− 0.31 log(M)
log(2) (M 6 154 kg)

The transition occurs in the convective tree for mammals with a mass larger than 154 kg and
in acini formammalswith amass lower than 154 kg. In each compartment, the index depends
linearly on the logarithm of the mass of the animal.

At MMR, the transition always occurs in acini and the corresponding generation index
kMMR depends linearly on the logarithm of the mass of the animal,

kMMR = G− 1 + 5.02− 0.24
log(M)

log(2)

The dependence of the indices kBMR and kMMR on mammal masses are plotted in Figure
3.

3 Model equations

The transport of oxygen and carbon dioxide in the lung is driven by three main phenomena:
convection, diffusion and exchange with the acini walls. The airways are modelled as cylin-
ders. We assume that the airways and fluid properties are the same in all the branches with
the same generation index, hence we can study only one airway in each generation. For the
generation i, we defineCi(t, x) as themean oxygen concentration at the time t over the slice
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of the cylinder located at the position x on the axis of the cylinder. Equivalently, we define
the mean partial pressure Pi(t, x), which is proportional to the mean oxygen concentration.

The equations of oxygen transport in a cylinder are derived using a mass balance for oxy-
gen in a slice with thickness dx localized at the position x on the cylinder axis, as schematized
in Figure 4.

dx

Ql Qr

Qw
Figure 4. Mass balance in a slice of an idealized airway (cylinder). The variation of oxygen
concentration in the slice depends on the balance between the oxygen flow entering the
slice and getting out of the slice.

The quantity of oxygen entering the slice by the "left" sideQl in Figure 4 is
Ql(t, x) =

(
ui(t)Ci(t, x)−DdCi

dx
(t, x)

)
πr2i

whereD is the diffusion coefficient of oxygen in air, ui(t) is the mean velocity of the fluid in
the generation i and ri is the radius of the airways of generation i. The quantity of oxygen
leaving the slice by the "right" sideQr in Figure 4 is

Qr(t, x) = −
(
ui(t)Ci(t, x+ dx)−DdCi

dx
(t, x+ dx)

)
πr2i

Finally, the quantity of oxygen exchanged with the bronchus walls is
Qw(t, x) = −αiρs (Pi(x)− Pblood) 2πridx

where Pblood is the O2 partial pressure in blood, ρs is the amount of exchange surface area
per unit of alveolar duct surface area, see Appendix 2.8, and αi is the permeability of the
alveolar membrane (Felici, 2003):

αi =

0 (i = 0...G− 1)

α =
DO2 ,H2OσO2 ,H2O

τ
(i = G...N − 1)

(11)

where DO2 ,H2O is the diffusion coefficient of oxygen in water, σO2 ,H2O is the solubility coeffi-
cient of oxygen in water and τ is the thickness of the alveolar membrane.
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Finally, the variation in the slice of oxygen concentration over time is
πr2i dx

∂Ci
∂t

(t, x) = Ql(t, x) +Qr(t, x) +Qw(t, x)

Making the length of the slice dx go to zero, we obtain for x ∈ [0, li],
∂Ci
∂t

πr2i −D
∂2Ci
∂x2

πr2i︸ ︷︷ ︸
diffusion

+ui(t)
∂Ci
∂x

πr2i︸ ︷︷ ︸
convection

+αiρs (Pi − Pblood) 2πri︸ ︷︷ ︸
exchange with blood

= 0.

As concentration and partial pressure are proportional, we can work with partial pressure
only. Finally, the transport dynamics of oxygen partial pressure in a single branch is, for
x ∈ [0, li],

∂Pi
∂t
−D∂

2Pi
∂x2︸ ︷︷ ︸

diffusion
+ui(t)

∂Pi
∂x︸ ︷︷ ︸

convection
+βi (Pi − Pblood)︸ ︷︷ ︸

exchange with blood
= 0 (12)

The exchange coefficient βi is

βi =


0 (i = 0...G− 1)

ρs
2k

rA
αi (i = G...N − 1)

(13)

where k is the ratio relating oxygen partial pressure to its concentration in water and rA is
the radius of the branches in the acinus.

4 Blood partial pressures

Blood partial pressure Pblood of oxygen depends non linearly on the local value of Pi, as a
result of a balance between the amount of oxygen exchanged through the alveolar–capillary
membrane and the amount of oxygen stored or freed during the passage of blood in capil-
laries (Noël and Mauroy, 2019).

As oxygen is stored within haemoglobin and dissolved in plasma, this balance writes
α (Pi − Pblood) = 4Z0(f(Pblood)− f(P̃aO2)) + σO2vs

(
Pblood − P̃aO2

) (14)
with Z0 the haemoglobin concentration. Each of haemoglobin molecules contains four sites
of bindingwith oxygenmolecules, hence the 4 in factor ofZ0. The function f(x) = x2.6/(x2.6+

262.6) is the Hill’s equation (Hill et al., 1936) that reproduces the saturation of haemoglobin
depending on oxygen partial pressure in blood. The quantity vs corresponds to blood velocity
in capillaries and σO2

corresponds to the solubility coefficient of oxygen in blood. The pres-
sure P̃aO2

= 88 mmHg is the effective partial pressure of oxygen in arterial lung circulation
(low oxygenated blood) that accounts for potential previous visits of other alveoli by blood,
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as defined in (Noël andMauroy, 2019). This quantity is assumed independent of themammal
species (Lindstedt, 1984).

The mean blood velocity vs depends on the mass and on the metabolic regime studied. It
can be computed as the ratio of the capillary length lc over the transit time in a capillary tc. As
in GBWest et al. (1997), we assume that the terminal units of the blood network are invariant
in size. Hence, the capillary length is constant in our model and equals to 1mm. The transit
time in capillaries depends both on mass and on metabolic rate,
tc ' 0.36 M

1
4 at basal metabolic rate (Haverkamp et al., 2005; GB West et al., 1997)

tc ' 0.25 M0.165 at maximal metabolic rate (Bishop and Spivey, 2013; Haverkamp et al., 2005)
No data is available in the literature for field metabolic rate. Nevertheless, we determine a
default allometric scaling law based on the fact that field metabolic rate (Hudson et al., 2013)
is more similar to basal metabolic rate than maximal metabolic rate for which the energy is
mostly spent by muscle activity (Haverkamp et al., 2005). Hence, we assume that the expo-
nent for tc is the same at field metabolic rate and at basal metabolic rate.

Then, using the estimated value tc = 838 s for human based on the data from Haverkamp
et al. (Haverkamp et al., 2005), we use as the allometric scaling law for the transit time at field
metabolic rate,

tc ' 0.29 M
1
4 at field metabolic rate

Notice that the model sensitivity relatively to this hypothesis is very low, as indicated in Ap-
pendix 8.

5 Boundary conditions

To mimic lung bifurcations, we use continuity conditions Pi(li, t) = Pi+1(0, t) and conserva-
tion of the number oxygen molecules
Si

(
ui(t)Pi(t, li)−D

∂Pi(t, li)

∂x

)
− 2Si+1

(
ui+1(t)Pi+1(t, 0)−D∂Pi+1(t, 0)

∂x

)
= 0 (15)

The 2 on the righthandside of the last expression indicates that an airway in the generation i
bifurcates into two airways in the generation i+ 1.

Oxygen conservation can be rewritten, using the previous continuity condition,
−DSi

∂Pi(t, li)

∂x
= −2DSi+1

∂Pi+1(t, 0)

∂x
(16)

Finally, we assume that P0(t, 0) = Pair at the trachea entrance, where Pair is the partial
pressure of oxygen in ambient air. The surface area represented by the outlets of the deepest
airways of the tree is negligible relatively to the whole exchange surface area. Moreover, the
exchange occurring at these outlets is negligible relatively to the exchange occurring in the
upper parts of the acini. Hence, we can assume that no exchange occurs at the outlets of the
deepest airways in acini, i.e. −D ∂PN−1

∂x (lA, t) = 0.
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6 Initial conditions

At time t = 0, we assume ui(0) = 0, ∂Pi

∂t (0, x) = 0 in the convective part of the tree (i =

0...G− 1) and Pi(0, x) constant in acini (i = G...N − 1). Then, an explicit stationary solution
in the bronchial tree can be derived and used as a non trivial initial condition, for i = 0...G−1

with Pblood fixed to P̃aO2 = 88 mmHg (see Appendix 4),

Pi(0, x) = Pair +
Pblood − Pair
N∑
k=0

(
1
2h

)k
(
i−1∑
k=0

(
1

2h

)k
+

(
1

2h

)i
x

li

)
.

For i = G...N − 1, we suppose that the partial pressure is the same as in blood, Pi(0, x) =

Pblood.
This initial condition allows to speed up the algorithm by giving a non-trivial and physically

relevant oxygen distribution at the start of the algorithm. Nevertheless, it is necessary to run
the model of oxygen transport for several ventilation cycles to reach periodic oxygen profiles
in airways.

7 Numerical scheme

This model is analyzed with numerical simulations that allow to get numerical approximation
of the solutions of the equations system. The numerical method is based on a discretization
of the transport equations using an implicit finite differences scheme. The computation are
performed using the computing language Julia (Bezanson et al., 2017). From the initial distri-
bution of partial pressures in the tree, the simulations are then run up to a time when the
oxygen concentration pattern becomes periodic in time. All the model predictions are based
on computations made when the oxygen profile is periodic.

The optimizationprocess ismadeby inverting numerically the implicit constraint fO2
(VT , fb) =

V̇O2 with the secant method. The inversion is equivocal and allows to compute numerically
the non-linear function fb → VT (fb). Then, the optimization is performed on the unidi-
mensional function fb → P̃(VT (fb), fb) by computing explicitly dP̃(VT (fb),fb)

dfb
from equation

(2) and by solving dP̃(VT (fb),fb)
dfb

= 0. The derivative dP̃(VT (fb),fb)
dfb

depends on VT (fb) and
dVT (fb)
dfb

. The quantity dVT (fb)
dfb

is estimated numerically using the approximation dVT (fb)
dfb

=
VT (fb+m)−VT (fb)

m withm a scalar small relatively to fb.

8 Sensitivity analysis

Running sets of simulations, we studied the parameters sensitivity of our model, more specif-
ically for the parameters for which the data in the literature are scarce or missing.
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First, our sensitivity analysis shows that our model has a very low sensitivity to the allo-
metric scaling law of the blood residence time in pulmonary capillaries, indicating that the
choice made for the transit time of blood at field metabolic rate does not affect significantly
the model predictions.

The hydrodynamic resistance R is positively correlated to the exponent of breathing rate
fb. A hydrodynamic resistance independent of the ventilation regime leads to good predic-
tions for breathing rates at both BMR andMMR. This hypothesis is supported by the reported
changes in dead volume during exercise and by the effects of inertia and turbulence on the
hydrodynamic resistance (Haverkamp et al., 2005). Indeed, if we neglect the inertia and tur-
bulence in the bronchi at MMR, the change in dead volume at this regime leads the hydrody-
namic resistance to be decreased by a factor larger than 3. In this case, the corresponding
exponent for breathing rates drops to−0.10. Consequently inertia and turbulencemight play
an important role on the control of breathing rates, but, interestingly, their influence seems
to be balanced by the dead volumes increase. Hence, this shows that the hypothesis of a
hydrodynamic resistance independent of the ventilation regime is a satisfactory approxima-
tion.
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