Submit a preprint

111

Non-Markovian modelling highlights the importance of age structure on Covid-19 epidemiological dynamicsuse asterix (*) to get italics
Bastien Reyné, Quentin Richard, Camille Noûs, Christian Selinger, Mircea T. Sofonea, Ramsès Djidjou-Demasse, Samuel AlizonPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2022
<p style="text-align: justify;">The Covid-19 pandemic outbreak was followed by a huge amount of modelling studies in order to rapidly gain insights to implement the best public health policies. Most of these compartmental models involved ordinary differential equations (ODEs) systems. Such a formalism implicitly assumes that the time spent in each compartment does not depend on the time already spent in it, which is at odds with the clinical data. To overcome this “memoryless” issue, a widely used solution is to increase and chain the number of compartments of a unique reality (e.g. have infected individual move between several compartments). This allows for greater heterogeneity and thus be closer to the observed situation, but also tends to make the whole model more difficult to apprehend and parameterize. We develop a non-Markovian alternative formalism based on partial differential equations (PDEs) instead of ODEs, which, by construction, provides a memory structure for each compartment thereby allowing us to limit the number of compartments. We apply our model to the French 2021 SARS-CoV-2 epidemic and, while accounting for vaccine-induced and natural immunity, we analyse and determine the major components that contributed to the Covid-19 hospital admissions. The results indicate that the observed vaccination rate alone is not enough to control the epidemic, and a global sensitivity analysis highlights a huge uncertainty attributable to the age-structured contact matrix. Our study shows the flexibility and robustness of PDE formalism to capture national COVID-19 dynamics and opens perspectives to study medium or long-term scenarios involving immune waning or virus evolution.</p>
https://doi.org/10.5281/zenodo.5549752You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
epidemiology, infectious diseases modelling, contact matrix, partial differential equations, Covid-19
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Dynamical systems, Epidemiology, Systems biology
No need for them to be recommenders of PCI Math Comp Biol. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2021-10-04 13:49:51
Chen Liao